Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 255: 107224, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643822

RESUMO

Green silver nanoparticles (G-Ag NPs) have contributed to the development of ecological technologies with low environmental impact and safer for human health, as well as demonstrating potential for the control of vectors and intermediate hosts. However, knowledge about its toxicity in the early stages of gastropod development remains scarce. Therefore, the current study aimed to investigate the toxicity of G-Ag NPs synthesized from Croton urucurana leaf extracts in snail species Biomphalaria glabrata, which is an intermediate host for Schistosoma mansoni parasite. G-Ag NPs were synthesized using two types of plant extracts (aqueous and hydroethanolic) and characterized using multiple techniques. Bioassays focused on investigating G-Ag NPs and plant extracts were carried out with embryos and newly hatched snails, for 144 h and 96 h, respectively; toxicity was analyzed based on mortality, hatching, development inhibition, and morphological changes. Results have shown that both G-Ag NPs were more toxic to embryos and newly hatched snails than the investigated plant extracts. G-Ag NPs deriving from aqueous extract have higher molluscicidal activity than those deriving from hydroethanolic extract. Both G-Ag NPs induced mortality, hatching delay, development inhibition, and morphological changes (i.e., hydropic embryos), indicating their molluscicidal activities. Moreover, embryos were more sensitive to G-Ag NPs than newly hatched snails. Thus, the toxicity of G-Ag NPs to freshwater snails depends on the type of extracts and the snail's developmental stages. These findings can contribute to the development of green nanobiotechnologies applicable to control snails of medical importance.


Assuntos
Biomphalaria , Croton , Nanopartículas Metálicas , Extratos Vegetais , Prata , Animais , Prata/toxicidade , Biomphalaria/efeitos dos fármacos , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Croton/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Água Doce , Folhas de Planta/química , Moluscocidas/toxicidade , Schistosoma mansoni/efeitos dos fármacos , Química Verde
2.
Sci Total Environ ; 834: 155299, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439509

RESUMO

Green nanoparticles (GNPs), mainly green silver nanoparticles (Ag NPs), have been recommended as sustainable and eco-friendly technologies to control vectors and intermediate hosts. The aim of the current study is to carry out a historical and systematic literature review about the use of green plant-based Ag NPs (GP-Ag NPs) to control medically important mosquito, tick and gastropods. Data about the number of studies published per year, geographical distribution of studies (mailing address of the corresponding author), synthesis type (plant species, plant structure and extract types), physicochemical properties of GP-Ag NPs, experimental designs, developmental stages and the toxic effects on mosquitoes, ticks and gastropods were summarized and discussed. Revised data showed that GP-Ag NPs synthesis and toxicity in mosquitoes, ticks and snails depend on plant species, plant part, extract types, exposure condition and on the analyzed species. GP-Ag NPs induced mortality, tissue damage, biochemical and behavioral changes in mosquitoes and reduced their fecundity, oviposition, egg hatching and longevity. Ticks exposed to GP-Ag NPs presented increased mortality and reduced oviposition, while on snails, studies demonstrated mortality, oxidative stress, and DNA damage. Immune responses were also observed in snails after their exposure to GP-Ag NPs. GP-Ag NPs reduced the reproduction and population of several vectors and intermediate hosts. This finding confirms their potential to be used in gastropod control programs. Future studies about current gaps in knowledge are recommended.


Assuntos
Culicidae , Nanopartículas Metálicas , Carrapatos , Animais , Feminino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Mosquitos Vetores , Extratos Vegetais/química , Plantas , Prata/química
3.
Carbohydr Polym ; 178: 378-385, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050608

RESUMO

This study describes the synthesis of magnetic nanohydrogels by miniemulsion polymerization technique. Dextran was derivatized by the glycidyl methacrylate to anchor vinyl groups on polysaccharides backbone, allowing its use as a macromonomer for miniemulsion polymerization, as confirmed by proton nuclear magnetic resonance spectroscopy (13C NMR). Magnetite nanoparticles were synthesized by coprecipitation, followed by air oxidation to maghemite. The results of X-ray diffractometry (XRD), Raman and transmission electron microscopy (TEM) analysis showed that maghemite nanoparticles were obtained with a diameter of 5.27nm. The entrapment of iron oxide nanoparticles in a dextran nanohydrogel matrix was confirmed by thermogravimetric analysis (TGA), scanning transmission electron microscopy (STEM) and Zeta potential data. The magnetic nanohydrogels presented superparamagnetic behavior and were colloidal stable in physiological during 30days. Our findings suggest that the synthesized magnetic nanohydrogel are potential candidates for use in drug delivery systems due to its physicochemical and magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...