Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microorganisms ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35630351

RESUMO

Xylanases are hemicellulases that break down xylan to soluble pentoses. They are used for industrial purposes, such as paper whitening, beverage clarification, and biofuel production. The second-generation bioethanol production is hindered by the enzymatic hydrolysis step of the lignocellulosic biomass, due to the complex arrangement established among its constituents. Xylanases can potentially increase the production yield by improving the action of the cellulolytic enzyme complex. We prospected endo-ß-1,4-xylanases from meta-transcriptomes of the termite Heterotermes tenuis. In silico structural characterization and functional analysis of an endo-ß-1,4-xylanase from a symbiotic protist of H. tenuis indicate two active sites and a substrate-binding groove needed for the catalytic activity. No N-glycosylation sites were found. This endo-ß-1,4-xylanase was recombinantly expressed in Pichia pastoris and Escherichia coli cells, presenting a molecular mass of approximately 20 kDa. Enzymatic activity assay using recombinant endo-ß-1,4-xylanase was also performed on 1% xylan agar stained with Congo red at 30 °C and 40 °C. The enzyme expressed in both systems was able to hydrolyze the substrate xylan, becoming a promising candidate for further analysis aiming to determine its potential for application in industrial xylan degradation processes.

2.
Insect Biochem Mol Biol ; 146: 103774, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470035

RESUMO

Pollinator populations, including bees, are in rapid decline in many parts of the world, raising concerns over the future of ecosystems and food production. Among the factors involved in these declines, poor nutrition deserves attention. The diet consumed by adult worker honeybees (Apis mellifera) is crucial for their behavioral maturation, i.e., the progressive division of labor they perform, such as nurse bees initially and later in life as foragers. Poor pollen nutrition is known to reduce the workers' lifespan, but the underlying physiological and genetic mechanisms are not fully understood. Here we investigate how the lack of pollen in the diet of workers during their first week of adult life can affect age-related phenotypes. During the first seven days of adult life, newly emerged workers were fed either a pollen-deprived (PD) diet mimicking that of an older bee, or a control pollen-rich (PR) diet, as typically consumed by young bees. The PD-fed bees showed alterations in their fat body transcriptome, such as a switch from a protein-lipid based metabolism to a carbohydrate-based metabolism, and a reduced expression of genes involved with immune response. The absence of pollen in the diet also led to an accumulation of oxidative stress markers in fat body tissue and alterations in the cuticular hydrocarbon profiles, which became similar to those of chronologically older bees. Together, our data indicate that the absence of pollen during first week of adulthood triggers the premature onset of an aging-related worker phenotype.


Assuntos
Senilidade Prematura , Animais , Abelhas , Dieta , Ecossistema , Pólen , Transcriptoma
3.
BMC Genomics ; 21(1): 386, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493270

RESUMO

BACKGROUND: Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only. We present here the genome sequence of Frieseomelitta varia, a stingless bee that has, as a peculiarity, a completely sterile worker caste. RESULTS: The assembly of 243,974,526 high quality Illumina reads resulted in a predicted assembled genome size of 275 Mb composed of 2173 scaffolds. A BUSCO analysis for the 10,526 predicted genes showed that these represent 96.6% of the expected hymenopteran orthologs. We also predicted 169,371 repetitive genomic components, 2083 putative transposable elements, and 1946 genes for non-coding RNAs, largely long non-coding RNAs. The mitochondrial genome comprises 15,144 bp, encoding 13 proteins, 22 tRNAs and 2 rRNAs. We observed considerable rearrangement in the mitochondrial gene order compared to other bees. For an in-depth analysis of genes related to social biology, we manually checked the annotations for 533 automatically predicted gene models, including 127 genes related to reproductive processes, 104 to development, and 174 immunity-related genes. We also performed specific searches for genes containing transcription factor domains and genes related to neurogenesis and chemosensory communication. CONCLUSIONS: The total genome size for F. varia is similar to the sequenced genomes of other bees. Using specific prediction methods, we identified a large number of repetitive genome components and long non-coding RNAs, which could provide the molecular basis for gene regulatory plasticity, including worker reproduction. The remarkable reshuffling in gene order in the mitochondrial genome suggests that stingless bees may be a hotspot for mtDNA evolution. Hence, while being just the second stingless bee genome sequenced, we expect that subsequent targeting of a selected set of species from this diverse clade of highly eusocial bees will reveal relevant evolutionary signals and trends related to eusociality in these important pollinators.


Assuntos
Abelhas/fisiologia , Núcleo Celular/genética , Biologia Computacional/métodos , Mitocôndrias/genética , Animais , Abelhas/classificação , Abelhas/genética , Comportamento Animal , Ordem dos Genes , Tamanho do Genoma , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetitivas Dispersas , RNA Longo não Codificante/genética , Comportamento Social , Sequenciamento Completo do Genoma
4.
Sci Rep ; 9(1): 17692, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776359

RESUMO

Stingless bees are generalist pollinators distributed through the pantropical region. There is growing evidence that their wild populations are experiencing substantial decline in response to habitat degradation and pesticides. Policies for conservation of endangered species will benefit from studies focusing on genetic and molecular aspects of their development and behavior. The most common method for looking at gene expression is real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR) of the mRNA of interest. This method requires the identification of reliable reference genes to correctly estimate fluctuations in transcript levels. To contribute to molecular studies on stingless bees, we used Frieseomelitta varia, Melipona quadrifasciata, and Scaptotrigona bipunctata species to test the expression stability of eight reference genes (act, ef1-α, gapdh, rpl32, rps5, rps18, tbp, and tbp-af) in RT-qPCR procedures in five physiological and experimental conditions (development, sex, tissues, bacteria injection, and pesticide exposure). In general, the rpl32, rps5 and rps18 ribosomal protein genes and tpb-af gene showed the highest stability, thus being identified as suitable reference genes for the three stingless bee species and defined conditions. Our results also emphasized the need to evaluate the stability of candidate genes for any designed experimental condition and stingless bee species.


Assuntos
Abelhas/classificação , Abelhas/genética , Expressão Gênica/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/microbiologia , Escherichia coli , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Corpo Adiposo , Feminino , Genes Essenciais , Cabeça , Larva/genética , Masculino , Ovário , Praguicidas/farmacologia , Pupa/genética , Sexo
5.
Front Genet ; 5: 445, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566327

RESUMO

Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A(+) transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.

6.
J Exp Biol ; 216(Pt 19): 3724-32, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23788711

RESUMO

In honey bees, vitellogenin (Vg) is hypothesized to be a major factor affecting hormone signaling, food-related behavior, immunity, stress resistance and lifespan. MicroRNAs, which play important roles in post-transcriptional gene regulation, likewise affect many biological processes. The actions of microRNAs and Vg are known to intersect in the context of reproduction; however, the role of these associations on social behavior is unknown. The phenotypic effects of Vg knockdown are best established and studied in the forager stage of workers. Thus, we exploited the well-established RNA interference (RNAi) protocol for Vg knockdown to investigate its downstream effects on microRNA population in honey bee foragers' brain and fat body tissue. To identify microRNAs that are differentially expressed between tissues in control and knockdown foragers, we used µParaflo microfluidic oligonucleotide microRNA microarrays. Our results showed that 76 and 74 microRNAs were expressed in the brain of control and knockdown foragers whereas 66 and 69 microRNAs were expressed in the fat body of control and knockdown foragers, respectively. Target prediction identified potential seed matches for a differentially expressed subset of microRNAs affected by Vg knockdown. These candidate genes are involved in a broad range of biological processes including insulin signaling, juvenile hormone (JH) and ecdysteroid signaling previously shown to affect foraging behavior. Thus, here we demonstrate a causal link between the Vg knockdown forager phenotype and variation in the abundance of microRNAs in different tissues, with possible consequences for the regulation of foraging behavior.


Assuntos
Abelhas/genética , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica , Proteínas de Insetos/genética , MicroRNAs/genética , Vitelogeninas/genética , Animais , Abelhas/fisiologia , Encéfalo/metabolismo , Comportamento Alimentar , Feminino , Masculino , Fenótipo , Interferência de RNA
7.
Insects ; 4(1): 90-103, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26466797

RESUMO

RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

8.
PLoS One ; 6(5): e20513, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655217

RESUMO

Cuticle renewal is a complex biological process that depends on the cross talk between hormone levels and gene expression. This study characterized the expression of two genes encoding cuticle proteins sharing the four conserved amino acid blocks of the Tweedle family, AmelTwdl1 and AmelTwdl2, and a gene encoding a cuticle peroxidase containing the Animal haem peroxidase domain, Ampxd, in the honey bee. Gene sequencing and annotation validated the formerly predicted tweedle genes, and revealed a novel gene, Ampxd, in the honey bee genome. Expression of these genes was studied in the context of the ecdysteroid-coordinated pupal-to-adult molt, and in different tissues. Higher transcript levels were detected in the integument after the ecdysteroid peak that induces apolysis, coinciding with the synthesis and deposition of the adult exoskeleton and its early differentiation. The effect of this hormone was confirmed in vivo by tying a ligature between the thorax and abdomen of early pupae to prevent the abdominal integument from coming in contact with ecdysteroids released from the prothoracic gland. This procedure impaired the natural increase in transcript levels in the abdominal integument. Both tweedle genes were expressed at higher levels in the empty gut than in the thoracic integument and trachea of pharate adults. In contrast, Ampxd transcripts were found in higher levels in the thoracic integument and trachea than in the gut. Together, the data strongly suggest that these three genes play roles in ecdysteroid-dependent exoskeleton construction and differentiation and also point to a possible role for the two tweedle genes in the formation of the cuticle (peritrophic membrane) that internally lines the gut.


Assuntos
Ecdisteroides/metabolismo , Proteínas de Insetos/metabolismo , Peroxidase/metabolismo , Animais , Abelhas , Western Blotting , Biologia Computacional , Ecdisteroides/genética , Eletroforese em Gel de Poliacrilamida , Proteínas de Insetos/genética , Peroxidase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
BMC Mol Biol ; 11: 23, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20346164

RESUMO

BACKGROUND: Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. RESULTS: The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste- and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. CONCLUSIONS: Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.


Assuntos
Abelhas/genética , Proteínas de Insetos/genética , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Expressão Gênica , Proteínas de Insetos/química , Hormônios Juvenis/metabolismo , Larva/genética , Reprodução
10.
Arch Insect Biochem Physiol ; 67(2): 97-106, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18076110

RESUMO

Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silico analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.


Assuntos
Abelhas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Metiltransferases/biossíntese , Metiltransferases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Abelhas/classificação , Abelhas/enzimologia , Abelhas/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/genética , Larva/fisiologia , Metiltransferases/química , Dados de Sequência Molecular , Pupa/fisiologia , Alinhamento de Sequência , Sesquiterpenos/metabolismo
11.
Arch Insect Biochem Physiol ; 63(2): 57-72, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16983665

RESUMO

An N-terminal amino acid sequence of a previously reported honey bee hexamerin, HEX 110 [Danty et al., Insect Biochem Mol Biol 28:387-397 (1998)], was used as reference to identify the predicted genomic sequence in a public GenBank database. In silico analysis revealed an ORF of 3,033 nucleotides that encompasses eight exons. The conceptual translation product is a glutamine-rich polypeptide with a predicted molecular mass of 112.2 kDa and pI of 6.43, which contains the conserved M and C hemocyanin domains. Semiquantitative and quantitative RT-PCR with specific primers allowed for an analysis of mRNA levels during worker bee development and under different physiological conditions. Concomitantly, the abundance of the respective polypeptide in the hemolymph was examined by SDS-PAGE. Hex 110 transcripts were found in high levels during the larval stages, then decreased gradually during the pupal stage, and increased again in adults. HEX 110 subunits were highly abundant in larval hemolymph, decreased at the spinning-stage, and remained at low levels in pupae and adults. In 5th instar larvae, neither starvation nor supplementation of larval food with royal jelly changed the Hex 110 transcript levels or the amounts of HEX 110 subunit in hemolymph. In adult workers, high levels of Hex 110 mRNA, but not of the respective subunit, were related to ovary activation, and also to the consumption of a pollen-rich diet.


Assuntos
Abelhas/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Abelhas/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Feminino , Glutamina/metabolismo , Hemolinfa/química , Larva/genética , Dados de Sequência Molecular , Ovário/metabolismo , Pólen/metabolismo , Pupa/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
An Acad Bras Cienc ; 78(1): 69-75, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16532208

RESUMO

We have compared gene expression, using the Differential Display Reverse Transcriptase-Polymerase Chain Reaction (DDRT-PCR) technique, by means of mRNA profile in Melipona scutellaris during ontogenetic postembryonic development, in adult worker, and in both Natural and Juvenile Hormone III-induced adult queen. Six, out of the nine ESTs described here, presented differentially expressed in the phases L1 or L2, or even in both of them, suggesting that key mechanisms to the development of Melipona scutellaris are regulated in these stages. The combination HT11G-AP05 revealed in L1 and L2 a product which matches to thioredoxin reductase protein domain in the Clostridium sporogenes, an important protein during cellular oxidoreduction processes. This study represents the first molecular evidence of differential gene expression profiles toward a description of the genetic developmental traits in the genus Melipona.


Assuntos
Abelhas/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormônios Juvenis/genética , RNA Mensageiro/genética , Animais , Sequência de Bases , Abelhas/crescimento & desenvolvimento , Feminino , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
13.
An. acad. bras. ciênc ; 78(1): 69-75, Mar. 2006. tab
Artigo em Inglês | LILACS | ID: lil-422262

RESUMO

Nesse estudo nós usamos a técnica de Differential Display Reverse Transcriptase - Polymerase Chain Reaction (DDRT-PCR) para comparamos o perfil de mRNA em Melipona scutellaris durante o desenvolvimento ontogenético pós-embrionário e em operárias adultas, rainha natural e induzida pelo Hormônio Juvenil III. Fragmentos diferencialmente expressos foram detectados usando as seguintes combinações de primers: HT11G-AP05; HT11C-AP05; HT11G-OPF12; HT11G-OPA16. Dos 9 ESTs descrito nesse trabalho, 6 tiveram expressão diferencial nas fases de larva L1 e L2, sugerindo serem mecanismos chave no regulação do desenvolvimento larval em Melipona. A combinação HT11G-AP05 revelou em L1 e L2 um produto com similaridade à proteína tioredoxina redutase de Clostridium sporogenes, uma proteína importante durante os processos de oxidoredução. Esse estudo representa as primeiras evidências moleculares do perfil de expressão durante o desenvolvimento ontogenético em abelhas do gênero Melipona.


Assuntos
Animais , Feminino , Abelhas/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormônios Juvenis/genética , RNA Mensageiro/genética , Sequência de Bases , Abelhas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
14.
BMC Genomics ; 5: 84, 2004 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-15527499

RESUMO

BACKGROUND: The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers. RESULTS: Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes. CONCLUSIONS: The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes.


Assuntos
Abelhas/genética , Etiquetas de Sequências Expressas , Fases de Leitura Aberta/genética , Transcrição Gênica/genética , Animais , Anopheles/genética , Caenorhabditis elegans , Classificação , Análise por Conglomerados , Mapeamento de Sequências Contíguas/estatística & dados numéricos , Drosophila melanogaster/genética , Genes de Helmintos/genética , Genes de Insetos/genética , Genoma , Genoma Fúngico , Genoma Humano , Genoma de Protozoário , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...