Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 8: 263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322574

RESUMO

Both the catalytic production of 5-hydroxymethylfurfural (5-HMF) from carbohydrates and the use of a catalyst obtained from residues stand out for adding value to by-products and wastes. These processes contribute to the circular economy. In this work it was evaluated optimized conditions for 5-HMF production from fructose with high yield and selectivity. The reaction was catalyzed by an acidic carbon obtained from glycerol, a byproduct of the biodiesel industry. Special attention has been given to the use of dimethyl sulfoxide (DMSO) as a solvent and its influence on system activity, both in the presence and absence of O2. Glycerol's carbon with acidic properties can be effectively used as catalyst in fructose dehydration, allowed achieving conversions close to 100% with 5-HMF selectivities higher than 90%. The catalyst can be reused in consecutive batch runs. The influence of DMSO in the presence of O2 should be considered in the catalytic activity, as the stabilization of a reaction intermediate by the [O2:DMSO] complex is favored and, both fructose conversion and 5-HMF yield increase.

2.
Bioresour Technol ; 303: 122882, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32036328

RESUMO

Highly acidic lignin-derived sulfonated carbons (LDSCs) were produced from hardwood and softwood kraft lignins under mild conditions by applying fractionation and/or pre-carbonization treatments combined with acid-assisted hydrothermal carbonization. The use of lignin fraction with higher amount oxygen, obtained from the fractionation process, resulted in carbon with the highest density of surface acid groups and improved catalytic activity. The LDSCs were successful tested in the dehydration reaction of fructose to obtain 5-hydroxymethylfurfural, and the best catalyst can be recycled without loss in its catalytic activity after perform a simple regeneration process. In contrast, the pre-carbonization step, commonly performed in several works, resulted in LDSCs with low acidity. A simple and optimized methodology for obtaining LDSCs under mild conditions was developed, and the correlations between the preparation method and the physicochemical and catalytic properties established in this work may be extendible to other starting materials for rational sulfonated carbons production.


Assuntos
Fracionamento Químico , Lignina , Ácidos , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA