Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36550972

RESUMO

Gold nanoparticles (GNPs) have immense potential in biomedicine, but understanding their interactions with serum proteins is crucial as it could change their biological profile due to the formation of a protein corona, which could then affect their ultimate biodistribution in the body. Grafting GNPs with polyethylene glycol (PEG) is a widely used practice in research in order to decrease opsonization of the particles by serum proteins and to decrease particle uptake by the mononuclear phagocyte system. We investigated the impact of PEGylation on the formation of protein coronae and the subsequent uptake by macrophages and MDA-MB-231 cancer cells. Furthermore, we investigated the in vivo biodistribution in xenograft tumor-bearing mice using a library of 4 and 10 nm GNPs conjugated with a gadolinium chelate as MRI contrast agent, cancer-targeting aptamer AS1411 (or CRO control oligonucleotide), and with or without PEG molecules of different molecular weight (Mw: 1, 2, and 5 kDa). In vitro results showed that PEG failed to decrease the adsorption of proteins; moreover, the cellular uptake by macrophage cells was contingent on the different configurations of the aptamers and the length of the PEG chain. In vivo biodistribution studies showed that PEG increased the uptake by tumor cells for some GNPs, albeit it did not decrease the uptake of GNPs by macrophage-rich organs.

2.
Graefes Arch Clin Exp Ophthalmol ; 259(5): 1103-1111, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417094

RESUMO

PURPOSE: Posterior ocular trauma and the subsequent fibrotic retinal complication termed proliferative vitreoretinopathy (PVR) are leading causes of blindness in children and young adults. A previous study suggested that changes occurring within the first month post-trauma can lead to development of PVR later. The aim of this study was to examine the effect of dasatinib, a tyrosine kinase inhibitor clinically used to treat chronic myeloid leukemia, on fibrotic changes occurring within the first month following ocular trauma. METHODS: A previously established swine ocular trauma model that mimics both contusion and penetrating injuries was used. Dasatinib was administered on days 4 and 18 post-trauma via intravitreal injection of either bolus solution or suspension of a sustained release system incorporated in biodegradable poly (lactic-co-glycolic acid) (PLGA) nanoparticles. Animals were followed up to day 32, and the development of traction full-thickness fold in the posterior retina was assessed. RESULTS: A full-thickness retinal fold extending from the wound site developed in 3 out of 4 control eyes injected with PLGA nanoparticles alone at 1 month. Administration of dasatinib solution had little preventative effect with 6 out of 7 eyes developing a fold. In contrast, dasatinib-incorporated PLGA nanoparticle injection significantly reduced the incidence of fold to 1 out of 10 eyes. CONCLUSIONS: Injection of dasatinib-incorporated PLGA significantly reduced early fibrotic retinal changes which eventually lead to PVR following posterior ocular trauma. Thus, our sustained dasatinib release system can potentially be used to both prevent and/or broaden the surgical treatment window for PVR.


Assuntos
Traumatismos Oculares , Vitreorretinopatia Proliferativa , Animais , Dasatinibe/uso terapêutico , Traumatismos Oculares/etiologia , Traumatismos Oculares/prevenção & controle , Injeções Intravítreas , Retina , Suínos , Vitreorretinopatia Proliferativa/tratamento farmacológico , Vitreorretinopatia Proliferativa/etiologia , Vitreorretinopatia Proliferativa/prevenção & controle
3.
RSC Adv ; 10(27): 16110-16117, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35493666

RESUMO

The probability of human exposure to damaging radiation is increased in activities associated with long-term space flight, medical radiation therapies, and responses to nuclear accidents. However, the development of responsive countermeasures to combat radiation damage to biological tissue is lagging behind rates of human exposure. Herein, we report a radiation-responsive drug delivery system that releases doses of curcumin from a chitosan polymer/film in response to low level gamma radiation exposure. As a fibrous chitosan-curcumin polymer, 1 Gy gamma irradiation (137Cs) released 5 ± 1% of conjugated curcumin, while 6 Gy exposure releases 98 ± 1% of conjugated curcumin. The same polymer was formed into a film through solvent casting. The films showed similar, albeit attenuated behavior in water (100% released) and isopropyl alcohol (32% released) with statistically significant drug release following 2 Gy irradiation. ATR FT-IR studies confirmed glycosidic bond cleavage in the chitosan-curcumin polymer in response to gamma radiation exposure. Similar behavior was noted upon exposure of the polymer to 20 cGy (1 GeV amu-1, at 20 cGy min-1) high linear energy transfer (LET) 56Fe radiation based on FTIR studies. Density Functional Theory calculations indicate homolytic bond scission as the primary mechanism for polymer disintegration upon radiation exposure. Films did not change in thickness during the course of radiation exposure. The successful demonstration of radiation-triggered drug release may lead to new classes of radio-protective platforms for developing countermeasures to biological damage from ionizing radiation.

4.
Appl Opt ; 58(11): 2839-2844, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31044886

RESUMO

In this study we report the development of a novel viral pathogen immunosensor technology based on the electrochemical modulation of the optical signal from a surface plasmon wave interacting with a redox dye reporter. The device is formed by incorporating a sandwich immunoassay onto the surface of a plasmonic device mounted in a micro-electrochemical flow cell, where it is functionalized with a monoclonal antibody aimed to a specific target pathogen antigen. Once the target antigen is bound to the surface, it promotes the capturing of a secondary polyclonal antibody that has been conjugated with a redox-active methylene blue dye. The methylene blue displays a reversible change in the complex refractive index throughout a reduction-oxidation transition, which generates an optical signal that can be electrochemically modulated and detected at high sensitivity. For proof-of-principle measurements, we have targeted the hemagglutinin protein from the H5N1 avian influenza A virus to demonstrate the capabilities of our device for detection and quantification of a critical influenza antigen. Our experimental results of the EC-SPR-based immunosensor under potential modulation showed a 300 pM limit of detection for the H5N1 antigen.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos Virais/análise , Imunoensaio/instrumentação , Virus da Influenza A Subtipo H5N1/imunologia , Azul de Metileno/química , Ressonância de Plasmônio de Superfície/instrumentação , Técnicas Biossensoriais/instrumentação , Limite de Detecção
5.
Biomacromolecules ; 17(4): 1253-60, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26908114

RESUMO

Curcumin is known to have immense therapeutic potential but is hindered by poor solubility and rapid degradation in solution. To overcome these shortcomings, curcumin has been conjugated to chitosan through a pendant glutaric anhydride linker using amide bond coupling chemistry. The hybrid polymer has been characterized by UV-visible, fluorescence, and infrared spectroscopies as well as zeta potential measurements and SEM imaging. The conjugation reactivity was confirmed through gel permeation chromatography and quantification of unconjugated curcumin. An analogous reaction of curcumin with glucosamine, a small molecule analogue for chitosan, was performed and the purified product characterized by mass spectrometry, UV-visible, fluorescence, and infrared spectroscopies. Conjugation of curcumin to chitosan has greatly improved curcumin aqueous solubility and stability, with no significant curcumin degradation detected after one month in solution. The absorbance and fluorescence properties of curcumin are minimally perturbed (λmax shifts of 2 and 5 nm, respectively) by the conjugation reaction. This conjugation strategy required use of one out of two curcumin phenols (one of the main antioxidant functional groups) for covalent linkage to chitosan, thus temporarily attenuating its antioxidant capacity. Hydrolysis-based release of curcumin from the polymer, however, is accompanied by full restoration of curcumin's antioxidant potential. Antioxidant assays show that curcumin radical scavenging potential is reduced by 40% after conjugation, but that full antioxidant potential is restored upon hydrolytic release from chitosan. Release studies show that curcumin is released over 19 days from the polymer and maintains a concentration of 0.23 ± 0.12 µM curcumin/mg polymer/mL solution based on 1% curcumin loading on the polymer. Release studies in the presence of carbonic anhydrase, an enzyme with known phenolic esterase activity, show no significant difference from nonenzymatic release studies, implying that simple ester hydrolysis is the dominant release mechanism. Conjugation of curcumin to chitosan through a phenol ester modification provides improved stability and solubility to curcumin, with ester hydrolysis restoring the full antioxidant potential of curcumin.


Assuntos
Antioxidantes/farmacologia , Quitosana/química , Curcumina/química , Portadores de Fármacos/farmacologia , Polímeros/síntese química , Anidrases Carbônicas/metabolismo , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Glucosamina/química , Espectrometria de Massas , Polímeros/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...