RESUMO
Indole alkaloids ellipticine (1), cryptolepine triflate (2a), rationally designed 11-(4-piperidinamino)cryptolepine hydrogen dichloride (2b) and olivacine (3) (an isomer of 1) were evaluated in vitro against Plasmodium falciparum and in vivo in Plasmodium berghei-infected mice. 1-3 inhibited P. falciparum (IC50≤1.4 µM, order of activity: 2b>1>2a>3). In vitro toxicity to murine macrophages was evaluated and revealed selectivity indices (SI) of 10-12 for 2a and SI>2.8×10² for 1, 2b and 3. 1 administered orally at 50mg/kg/day was highly active against P. berghei (in vivo inhibition compared to untreated control (IVI)=100%, mean survival time (MST)>40 days, comparable activity to chloroquine control). 1 administered orally and subcutaneously was active at 10 mg/kg/day (IVI=70-77%; MST=27-29 days). 3 exhibited high oral activity at ≥50 mg/kg/day (IVI=90-97%, MST=23-27 days). Cryptolepine (2a) administered orally and subcutaneously exhibited moderate activity at 50mg/kg/day (IVI=43-63%, MST=24-25 days). At 50 mg/kg/day, 2b administered subcutaneously was lethal to infected mice (MST=3 days) and moderately active when administered orally (IVI=45-55%, MST=25 days). 1 and 3 are promising compounds for development of antimalarials.
Assuntos
Antimaláricos/uso terapêutico , Aspidosperma/química , Elipticinas/uso terapêutico , Alcaloides Indólicos/uso terapêutico , Malária/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Quinolinas/uso terapêutico , Animais , Antimaláricos/farmacologia , Elipticinas/isolamento & purificação , Elipticinas/farmacologia , Feminino , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Macrófagos/efeitos dos fármacos , Malária/parasitologia , Camundongos , Camundongos Endogâmicos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/isolamento & purificação , Quinolinas/farmacologiaRESUMO
Dillapiol, a phenylpropanoid isolate from essential oils of leaves of Piper aduncum (Piperaceae), has insecticidal, fungicidal and antimicrobial activities. The insecticidal activity of dillapiol was tested in vivo on the larvae and pupae of Aedes aegypti, the mosquito vector of dengue. Specifically, the effect of dillapiol on the formation of micronuclei and chromosome aberrations was analyzed. Dillapiol treatments comprised two concentrations of 200 and 400 micro dissolved in well water, and a pure well water control used to rear four generations of mosquitoes. Micronuclei occurred in mitotic diploid and tetraploid chromosomes of larvae; nuclear abnormalities also occurred in interphase, metaphase, telophase, and single nucleus cells of pupae. Mortality, oviposition, chromosome breakage, and anaphase bridges were significantly greater in the extract treatments than in controls. The genotoxic effects of dillapiol described here suggest that this natural product may be a useful alternative for the control of A. aegypti.