Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 33590-33600, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899403

RESUMO

Metal single-site catalysts have recently played an essential role in catalysis due to their enhanced activity, selectivity, and precise reaction control compared to those of conventional metal cluster catalysts. However, the rational design and catalytic application of metal single-site catalysts are still in the early stages of development. In this contribution, we report the rational design of Fe single sites incorporated in a hierarchical ZSM-5 via atomic layer deposition (ALD). The designer catalysts demonstrated highly dispersed Fe species, predominantly stabilized by oxygen atoms in the zeolite framework at terminal, isolated, and vicinal silanol groups within the micropores and external surfaces of the zeolite. The successful incorporation of highly thermally stable and uniform Fe single sites into hierarchical zeolite through ALD represents a significant advancement in few-walled carbon nanotube production. The inner and outer diameters of produced CNTs are approximately 4.4 ± 2.4 and 8.6 ± 1.8 nm, respectively, notably smaller than those produced via traditional impregnated catalysts. This example emphasizes the concept of rational design of a single Fe site dispersed on a hierarchical ZSM-5 surface, which is anticipated to be a promising catalyst for advancing catalytic applications.

2.
Chempluschem ; 89(2): e202300345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37876027

RESUMO

The conversion of CO2 into valuable substances is a topic of great interest in current research. Carbon nanotubes (CNT) have emerged as highly promising materials for CO2 conversion. In this study, we successfully developed a catalyst by loading active transition metals (Fe or Ni) onto hierarchical zeolite for CNT synthesis. Our catalyst demonstrated excellent performance under synthetic conditions. The most favorable CNT was obtained using the 25 wt.% FeHieFAU catalyst, which exhibited a diameter size of 23.1 nm, a CNT yield of 15.4 %, and an ID /IG ratio of 0.56, indicating high quality. Additionally, we investigated the beneficial effects of the synthesized CNT by testing their current response. Notably, the current response of the synthesized CNT surpassed that of commercial CNT when using a 0.5 M H2 SO4 supporting electrolyte and cyclic voltammetry (V vs. Ag/AgCl). These findings highlight the significant contributions of the small diameter and superior quality of our synthesized pure CNT, which offer potential improvements in current response compared to commercial CNT. This research opens new avenues for utilizing CNT in CO2 conversion and electrochemical applications.

3.
Chem Commun (Camb) ; 58(69): 9618-9621, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35929400

RESUMO

The development of industrial catalysts is of crucial importance for practical uses. However, the use of extruded catalysts in industry is still limited because of a remarkably decreased catalytic activity when combining them with binders. This contribution illustrates the rational design of binder-free hierarchical ZSM-5 pellets and monoliths derived from zeolite@LDHs composites via extrusion and 3D printing technologies, respectively. The designed catalyst applied in bioethanol dehydration boosts the ethylene yield by over 93.4 ± 2.2% due to the synergistic effect of zeolites and LDHs.


Assuntos
Zeolitas , Catálise , Desidratação , Etilenos , Humanos
4.
Inorg Chem ; 60(7): 4860-4868, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33764784

RESUMO

Carbonyl C═O bond reduction via catalytic transfer hydrogenation (CTH) is one of the essential processes for biomass conversion to valuable chemicals and fuels. Here, we investigate the CTH of furfural to furfuryl alcohol with i-propanol on UiO-66 metal-organic frameworks using density functional theory calculations and linear scaling relations. Initially, the reaction over two defect sites presented on Zr-UiO-66, namely, dehydrated and hydrated sites, have been compared. The hydrated active site is favored over that on the dehydrated active site since the activation free energy of the rate-determining reaction step occurring on the hydrated active site is lower than that occurring on the dehydrated active site (14.9 vs 17.9 kcal/mol). The catalytic effect of exchanged tetravalent metals (Hf and Ti) on Zr-UiO-66 is also considered. We found that Hf-UiO-66 (13.5 kcal/mol) provides a lower activation energy than Zr-UiO-66 (14.9 kcal/mol) and Ti-UiO-66 (19.4 kcal/mol), which corresponds to it having a higher Lewis acidity. The organic linkers of UiO-66 MOFs play a role in stabilizing all of the species on potential energy surfaces. The linear scaling relationship also reveals the significant role of the UiO-66 active site in activating the carbonyl C═O of furfural, and strong relationships are observed between the activation free energy, the charge of the metal at the MOF active sites, and the complexation energies in reaction coordinates.

5.
Phys Chem Chem Phys ; 23(3): 2500-2510, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33465219

RESUMO

In this work, we investigate the effect of various species of Cu oxide clusters including single and double active sites incorporated in the MFI zeolite framework for the direct conversion of methane to methanol. An M06-2X density functional calculation is employed to fine-tune the suitable number and species of active sites and to provide insights into the effect of the active sites on the reaction mechanism of methane to methanol. Two models, single and double active sites of Cu oxide clusters, have been chosen, in which the single active site of Cu oxide clusters, (mono(µ-oxo)dicopper(ii)), is located at the Al1'-Al12' pair ([Cu(µ-O)Cu]2+@Al1'-Al12'/MFI) or at the Al6-Al7 pair ([Cu(µ-O)Cu]2+@Al6-Al7/MFI) in the MFI framework. For the double active sites of Cu oxide clusters, two species of double active sites of Cu oxide are considered. The first one is the double active site of mono(µ-oxo)dicopper(ii) containingtwo Al-Al pairs (Al1'-Al12' and Al6-Al7 pairs) in the MFI framework (2[Cu(µ-O)Cu]2+/MFI) and the other is the double active site of trans-µ-1,2-peroxo dicopper(ii), which occupies two Al-Al pairs (Al1'-Al12' and Al6-Al7 pairs) in the MFI framework (2[Cu(µ-1,2-peroxo)Cu]2+/MFI). Furthermore, the activation energy for C-H bond dissociation in direct methane conversion to methanol is considered. Compared with the single active site of [Cu(µ-O)Cu]2+/MFI, the double active sites, in particular (2[Cu(µ-O)Cu]2+/MFI), exhibited the lowest activation energy, approximately 12.5 kcal mol-1. The high charge transfer between activated methane and Cu oxide active sites and also the high negative partial charge at the bridging oxygen of Cu oxide active sites, which directly interact with the methane molecule and abstracts its H atom, are considered as the important factors which affect the catalytic activity of Cu oxide clusters for direct methane conversion to methanol. These findings strongly support that the number and species of Cu oxide active sites incorporated in the MFI framework can highly affect the reaction mechanism of methane to methanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...