Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7619, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556584

RESUMO

Acute respiratory infection (ARI) is a communicable disease of the respiratory tract that implies impaired breathing. The infection can expand from one to the neighboring areas at a region-scale level through a human mobility network. Specific to this study, we leverage a record of ARI incidences in four periods of outbreaks for 42 regions in Jakarta to study its spatio-temporal spread using the concept of the epidemic forest. This framework generates a forest-like graph representing an explicit spread of disease that takes the onset time, spatio-temporal distance, and case prevalence into account. To support this framework, we use logistic curves to infer the onset time of the outbreak for each region. The result shows that regions with earlier onset dates tend to have a higher burden of cases, leading to the idea that the culprits of the disease spread are those with a high load of cases. To justify this, we generate the epidemic forest for the four periods of ARI outbreaks and identify the implied dominant trees (that with the most children cases). We find that the primary infected city of the dominant tree has a relatively higher burden of cases than other trees. In addition, we can investigate the timely ( R t ) and spatial reproduction number ( R c ) by directly evaluating them from the inferred graphs. We find that R t for dominant trees are significantly higher than non-dominant trees across all periods, with regions in western Jakarta tend to have higher values of R c . Lastly, we provide simulated-implied graphs by suppressing 50% load of cases of the primary infected city in the dominant tree that results in a reduced R c , suggesting a potential target of intervention to depress the overall ARI spread.


Assuntos
Epidemias , Infecções Respiratórias , Criança , Humanos , Indonésia/epidemiologia , Infecções Respiratórias/epidemiologia , Surtos de Doenças , Cidades
2.
Sci Rep ; 14(1): 7470, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553546

RESUMO

Virus mutations give rise to new variants that cause multiple waves of pandemics and escalate the infected number of individuals. In this paper, we develop both a simple random network that we define as a synthesized human interaction network and an epidemiological model based on the microscopic process of disease spreading to describe the epidemic process with three variants in a population with some features of social structure. The features of social structure we take into account in the model are the average number of degrees and the frequency of contacts. This paper shows many computational results from several scenarios both in varying network structures and epidemiological parameters that cannot be obtained numerically by using the compartmental model.


Assuntos
Epidemias , Humanos , Simulação por Computador
3.
Infect Dis Model ; 9(1): 245-262, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312350

RESUMO

The COVID-19 pandemic caused significant disruptions in the healthcare system, affecting vaccinations and the management of diphtheria cases. As a consequence of these disruptions, numerous countries have experienced a resurgence or an increase in diphtheria cases. West Java province in Indonesia is identified as one of the high-risk areas for diphtheria, experiencing an upward trend in cases from 2021 to 2023. To analyze the situation, we developed an SIR model, which integrated DPT and booster vaccinations to determine the basic reproduction number, an essential parameter for infectious diseases. Through spatial analysis of geo-referenced data, we identified hotspots and explained diffusion in diphtheria case clusters. The calculation of R0 resulted in an R0 = 1.17, indicating the potential for a diphtheria outbreak in West Java. To control the increasing cases, one possible approach is to raise the booster vaccination coverage from the current 64.84% to 75.15%, as suggested by simulation results. Furthermore, the spatial analysis revealed that hot spot clusters were present in the western, central, and southern regions, posing a high risk not only in densely populated areas but also in rural regions. The diffusion pattern of diphtheria clusters displayed an expansion-contagious pattern. Understanding the rising trend of diphtheria cases and their geographic distribution can offer crucial insights for government and health authorities to manage the number of diphtheria cases and make informed decisions regarding the best prevention and intervention strategies.

4.
Heliyon ; 9(9): e20009, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809646

RESUMO

Objectives: Primary and booster vaccinations are crucial in COVID-19 control. This study aimed to assess the minimum booster coverage to hamper potential surge of COVID-19 cases in 2023 in Indonesia, a low-resource setting country. Methods: We used a modified SEIR compartment model to assess different scenarios in booster coverage across West Java population: 35%, 50%, and 70%. We fitted the model, then we calculated the potential active cases in 2023 if each scenario was met before 2022 ends. A heat map of predicted cases from various booster coverages and time frames was produced and matched with vaccination rate's function to determine feasible time frames. Results: A minimum of 70% booster coverage in West Java is needed to reduce 90% of potential COVID-19 cases and avert possible surge in 2023. The booster doses should be distributed before February 2023 to achieve its optimum preventive effect. Delays in achieving minimum booster coverage is acceptable, but higher booster coverage will be required. Conclusions: For better COVID-19 control in Indonesia, booster vaccination is warranted, as presented by a case study in West Java. Sufficient vaccine supplies, infrastructure, and healthcare workers should be ensured to support a successful booster vaccination program.

5.
Trop Med Infect Dis ; 7(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36548662

RESUMO

COVID-19 has currently become a global pandemic and caused a high number of infected people and deaths. To restrain the coronavirus spread, many countries have implemented restrictions on people's movement and outdoor activities. The enforcement of health emergencies such as quarantine has a positive impact on reducing the COVID-19 infection risk, but it also has unwanted influences on health, social, and economic sectors. Here, we developed a compartmental mathematical model for COVID-19 transmission dynamic accommodating quarantine process and including tuberculosis and diabetic people compartments. We highlighted the potential negative impact induced by quarantine implementation on the increasing number of people with tuberculosis and diabetes. The actual COVID-19 data recorded in Indonesia during the Delta and Omicron variant attacks were well-approximated by the model's output. A positive relationship was indicated by a high value of Pearson correlation coefficient, r=0.9344 for Delta and r=0.8961 for Omicron with a significance level of p<0.05. By varying the value of the quarantine parameter, this study obtained that quarantine effectively reduces the number of COVID-19 but induces an increasing number of tuberculosis and diabetic people. In order to minimize these negative impacts, increasing public awareness about the dangers of TB transmission and implementing a healthy lifestyle were considered the most effective strategies based on the simulation. The insights and results presented in this study are potentially useful for relevant authorities to increase public awareness of the potential risk of TB transmission and to promote a healthy lifestyle during the implementation of quarantine.

6.
Trop Med Infect Dis ; 7(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36288030

RESUMO

When it comes to understanding the spread of COVID-19, recent studies have shown that pathogens can be transmitted in two ways: direct contact and airborne pathogens. While the former is strongly related to the distancing behavior of people in society, the latter are associated with the length of the period in which the airborne pathogens remain active. Considering those facts, we constructed a compartmental model with a time-dependent transmission rate that incorporates the two sources of infection. This paper provides an analytical and numerical study of the model that validates trivial insights related to disease spread in a responsive society. As a case study, we applied the model to the COVID-19 spread data from a university environment, namely, the Institut Teknologi Bandung, Indonesia, during its early reopening stage, with a constant number of students. The results show a significant fit between the rendered model and the recorded cases of infections. The extrapolated trajectories indicate the resurgence of cases as students' interaction distance approaches its natural level. The assessment of several strategies is undertaken in this study in order to assist with the school reopening process.

7.
Heliyon ; 8(8): e10350, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061000

RESUMO

Dengue fever is a notable vector-borne viral disease, currently becoming the most dreaded worldwide health problem in terms of the number of people affected. A data set of confirmed dengue incidences collected in the province of West Java has allowed us to explore dengue's temporal trends and spatial distributions to obtain more obvious insights into its spatial-temporal evolution. We utilized the Richards model to estimate the growth rate and detect the peak (or turning point) of the dengue infection wave by identifying the temporal progression at each location. Using spatial analysis of geo-referenced data from a local perspective, we investigated the changes in the spatial clusters of dengue cases and detected hot spots and cold spots in each weekly cycle. We found that the trend of confirmed dengue incidences significantly increases from January to March. More than two-third (70.4%) of the regions in West Java had their dengue infection turning point ranging from the first week of January to the second week of March. This trend clearly coincides with the peak of precipitation level during the rainy season. Further, the spatial analysis identified the hot spots distributed across central, northern, northeastern, and southeastern regions in West Java. The densely populated areas were likewise seen to be associated with the high-risk areas of dengue exposure. Recognizing the peak of epidemic and geographical distribution of dengue cases might provide important insights that may help local authorities optimize their dengue prevention and intervention programs.

8.
J Pers Med ; 12(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36143254

RESUMO

Mood swings in patients with bipolar disorder (BD) are difficult to control and can lead to self-harm and suicide. The interaction between the therapist and BD will determine the success of therapy. The interaction model between the therapist and BD begins by reviewing the models that were previously developed using the Systematic Literature Review and Bibliometric methods. The limit of articles used was sourced from the Science Direct, Google Scholar, and Dimensions databases from 2009 to 2022. The results obtained were 67 articles out of a total of 382 articles, which were then re-selected. The results of the selection of the last articles reviewed were 52 articles. Using VOSviewer version 1.6.16, a visualization of the relationship between the quotes "model", "therapy", "emotions", and "bipolar disorder" can be seen. This study also discusses the types of therapy that can be used by BD, as well as treatment innovations and the mathematical model of the therapy itself. The results of this study are expected to help further researchers to develop an interaction model between therapists and BD to improve the quality of life of BD.

9.
Infect Dis Model ; 7(3): 430-447, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35891623

RESUMO

Dengue virus infection is a leading health problem in many endemic countries, including Indonesia, characterized by high morbidity and wide spread. It is known that the risk factors that influence the transmission intensity vary among different age groups, which can have implications for dengue control strategies. A time-dependent four - age structure model of dengue transmission was constructed in this study. A vaccination scenario as control strategy was also applied to one of the age groups. Daily incidence data of dengue cases from Santo Borromeus Hospital, Bandung, Indonesia, from 2014 to 2016 was used to estimate the infection rate. We used two indicators to identify the changes in dengue transmission intensity for this period in each age group: the annual force of infection (FoI) and the effective reproduction ratio based on a time-dependent transmission rate. The results showed that the yearly FoI of children (age 0-4 years) increased significantly from 2014 to 2015, at 10.08%. Overall, the highest FoI before and after vaccination occurred in youngsters (age 5-14 years), with a FoI of about 6% per year. In addition, based on the daily effective reproduction ratio, it was found that vaccination of youngsters could reduce the number of dengue cases in Bandung city faster than vaccination of children.

10.
Sci Rep ; 12(1): 6675, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461352

RESUMO

We propose a new method to estimate the time-varying effective (or instantaneous) reproduction number of the novel coronavirus disease (COVID-19). The method is based on a discrete-time stochastic augmented compartmental model that describes the virus transmission. A two-stage estimation method, which combines the Extended Kalman Filter (EKF) to estimate the reported state variables (active and removed cases) and a low pass filter based on a rational transfer function to remove short term fluctuations of the reported cases, is used with case uncertainties that are assumed to follow a Gaussian distribution. Our method does not require information regarding serial intervals, which makes the estimation procedure simpler without reducing the quality of the estimate. We show that the proposed method is comparable to common approaches, e.g., age-structured and new cases based sequential Bayesian models. We also apply it to COVID-19 cases in the Scandinavian countries: Denmark, Sweden, and Norway, where the positive rates were below 5% recommended by WHO.


Assuntos
COVID-19 , Teorema de Bayes , COVID-19/epidemiologia , Humanos , Reprodução , Projetos de Pesquisa , SARS-CoV-2
11.
Vaccines (Basel) ; 9(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066317

RESUMO

With a limited number of vaccines and healthcare capacity shortages, particularly in low- and middle-income countries, vaccination programs should seek the most efficient strategy to reduce the negative impact of the COVID-19 pandemics. This study aims at assessing several scenarios of delivering the vaccine to people in Indonesia. We develop a model for several scenarios of delivering vaccines: without vaccination, fair distribution, and targeted distribution to five and eight districts with the highest COVID-19 incidence in West Java, one of the most COVID-19-affected regions in Indonesia. We calculate the needs of vaccines and healthcare staff for the program, then simulate the model for the initial 4-month and one-year scenarios. A one-year vaccination program would require 232,000 inoculations per day by 4833 vaccinators. Targeted vaccine allocation based on the burden of COVID-19 cases could benefit the COVID-19 vaccination program by lowering at least 5000 active cases. The benefits would increase by improving the number of vaccines and healthcare staff. Amidst lacking available vaccines, targeted vaccine allocation based on the burden of COVID-19 cases could increase the benefit of the COVID-19 vaccination program but still requires progressive efforts to improve healthcare capacity and vaccine availability for optimal protection for people.

12.
Infect Dis Model ; 6: 598-611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869907

RESUMO

BACKGROUND: Dengue is one of the most rapidly spreading vector-borne diseases, which is considered to be a major health concern in tropical and sub-tropical countries. It is strongly believed that the spread and abundance of vectors are related to climate. Construction of climate-based mathematical model that integrates meteorological factors into disease infection model becomes compelling challenge since the climate is positively associated with both incidence and vector existence. METHODS: A host-vector model is constructed to simulate the dynamic of transmission. The infection rate parameter is replaced with the time-dependent coefficient obtained by optimization to approximate the daily dengue data. Further, the optimized infection rate is denoted as a function of climate variables using the Autoregressive Distributed Lag (ARDL) model. RESULTS: The infection parameter can be extended when updated daily climates are known, and it can be useful to forecast dengue incidence. This approach provides proper prediction, even when tested in increasing or decreasing prediction windows. In addition, associations between climate and dengue are presented as a reversed slide-shaped curve for dengue-humidity and a reversed U-shaped curves for dengue-temperature and dengue-precipitation. The range of optimal temperature for infection is 24.3-30.5 °C. Humidity and precipitation are positively associated with dengue upper the threshold 70% at lag 38 days and below 50 mm at lag 50 days, respectively. CONCLUSION: Identification of association between climate and dengue is potentially useful to counter the high risk of dengue and strengthen the public health system and reduce the increase of the dengue burden.

13.
Sci Rep ; 10(1): 22386, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33372191

RESUMO

This paper presents a study of early epidemiological assessment of COVID-19 transmission dynamics in Indonesia. The aim is to quantify heterogeneity in the numbers of secondary infections. To this end, we estimate the basic reproduction number [Formula: see text] and the overdispersion parameter [Formula: see text] at two regions in Indonesia: Jakarta-Depok and Batam. The method to estimate [Formula: see text] is based on a sequential Bayesian method, while the parameter [Formula: see text] is estimated by fitting the secondary case data with a negative binomial distribution. Based on the first 1288 confirmed cases collected from both regions, we find a high degree of individual-level variation in the transmission. The basic reproduction number [Formula: see text] is estimated at 6.79 and 2.47, while the overdispersion parameter [Formula: see text] of a negative-binomial distribution is estimated at 0.06 and 0.2 for Jakarta-Depok and Batam, respectively. This suggests that superspreading events played a key role in the early stage of the outbreak, i.e., a small number of infected individuals are responsible for large numbers of COVID-19 transmission. This finding can be used to determine effective public measures, such as rapid isolation and identification, which are critical since delay of diagnosis is the most common cause of superspreading events.


Assuntos
Número Básico de Reprodução/estatística & dados numéricos , COVID-19/epidemiologia , COVID-19/transmissão , Simulação por Computador , Humanos , Indonésia/epidemiologia , Modelos Biológicos , SARS-CoV-2/crescimento & desenvolvimento
14.
Math Biosci Eng ; 17(4): 2998-3018, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987513

RESUMO

Measles is a contagious disease caused by the measles virus of genus Morbillivirus, which has been spreading in many affected regions. This infection is characterized by the appearance of rashes all over the body and potentially cause serious complications, especially among infants and children. Before measles immunization was promoted, it is one of the endemic diseases that caused the most fatalities each year in the world. This paper aims to analyze and to investigate measles transmission in Jakarta via an SIHR epidemic model involving vaccination from January to December 2017. Jakarta Health Office collected the observed data of measles incidence. We then derived the basic reproduction number as a threshold of disease transmission and obtained the local as well as global stability of the equilibria under certain conditions. The unobserved parameters and initial conditions were estimated by minimizing errors between data and numerical results. Furthermore, a stochastic model was developed to capture the data and to accommodate the randomness of the transmission. Sensitivity analysis was also performed to analyze and to identify the parameters which give significant contributions to the spread of the virus. We then obtained simulations of vaccine level coverage. The data is shown within a 95% confidence interval of the stochastic solutions, and the average of the stochastic solutions is relatively close to the solution of the deterministic model. The most sensitive parameter in the infected compartment is the hospitalized rate, which can be considered to be one of the essential factors to reduce the number of cases for policymakers. We hence proposed a control strategy which is providing treatment accesses easier for infected individuals is better than vaccinating when an outbreak occurs.


Assuntos
Vacina contra Sarampo , Sarampo , Criança , Surtos de Doenças/prevenção & controle , Humanos , Indonésia/epidemiologia , Lactente , Sarampo/epidemiologia , Sarampo/prevenção & controle , Vacinação
15.
Sci Rep ; 9(1): 8892, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221999

RESUMO

Most developed models for solving problems in epidemiology use deterministic approach. To cover the lack of spatial sense in the method, one uses statistical modeling, reaction-diffusion in continuous medium, or multi-patch model to depict epidemic activities in several connected locations. Here, we show that an epidemic model that is set as an organized system on networks can yield Turing patterns and other interesting behaviors that are sensitive to the initial conditions. The formed patterns can be used to determine the epidemic arrival time, its first peak occurrence and the peak duration. These epidemic quantities are beneficial to identify contribution of a disease source node to the others. Using a real structure network, the system also exhibits a comparable disease spread pattern of Diarrhea in Jakarta.


Assuntos
Simulação por Computador , Diarreia/epidemiologia , Surtos de Doenças , Humanos , Indonésia/epidemiologia
16.
Comput Math Methods Med ; 2015: 206131, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413140

RESUMO

Estimating the basic reproductive ratio ℛ 0 of dengue fever has continued to be an ever-increasing challenge among epidemiologists. In this paper we propose two different constructions to estimate ℛ 0 which is derived from a dynamical system of host-vector dengue transmission model. The construction is based on the original assumption that in the early states of an epidemic the infected human compartment increases exponentially at the same rate as the infected mosquito compartment (previous work). In the first proposed construction, we modify previous works by assuming that the rates of infection for mosquito and human compartments might be different. In the second construction, we add an improvement by including more realistic conditions in which the dynamics of an infected human compartments are intervened by the dynamics of an infected mosquito compartment, and vice versa. We apply our construction to the real dengue epidemic data from SB Hospital, Bandung, Indonesia, during the period of outbreak Nov. 25, 2008-Dec. 2012. We also propose two scenarios to determine the take-off rate of infection at the beginning of a dengue epidemic for construction of the estimates of ℛ 0: scenario I from equation of new cases of dengue with respect to time (daily) and scenario II from equation of new cases of dengue with respect to cumulative number of new cases of dengue. The results show that our first construction of ℛ 0 accommodates the take-off rate differences between mosquitoes and humans. Our second construction of the ℛ 0 estimation takes into account the presence of infective mosquitoes in the early growth rate of infective humans and vice versa. We conclude that the second approach is more realistic, compared with our first approach and the previous work.


Assuntos
Dengue/transmissão , Aedes/virologia , Animais , Número Básico de Reprodução/estatística & dados numéricos , Simulação por Computador , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue , Epidemias/estatística & dados numéricos , Humanos , Indonésia/epidemiologia , Insetos Vetores/virologia , Modelos Biológicos , Modelos Estatísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...