Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-7, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757413

RESUMO

Increased reactive oxygen species and advanced glycation end products are often associated with human ageing and degenerative diseases. Biancaea sappan L serves as a medicinal plant and a healthy drinks ingredient in Java. However, the pharmacological investigation of the plant native to this island is still lacking in depth. In the current study, DNA barcoding using the marker gene maturase K (matK), evaluation of the chemical composition, total phenolic content (TPC) and antioxidant properties, antiglycation, anti-ß-amyloid, anti-inflammatory, and selective cytotoxic activities were performed. B. sappan shares well-known phytoconstituents with other members of the genus Biancaea. The heartwood ethanol extract possesses the most prominent antioxidant, anti-inflammatory, and anti-ß-amyloid effects. The aqueous extract demonstrated a most substantial anti-glycation activity and was rich in phenolics. The ethanol extract from heartwood exhibited the highest cytotoxicity against SW-48, indicating B. sappan heartwood from Java holds promise as antioxidants and may selectively inhibit colorectal cancer.

2.
J Pharm Bioallied Sci ; 15(3): 158-163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705859

RESUMO

Pimpinella pruatjan Molk is native to Java and well known as aphrodisiac in traditional medicine. A water-boiled extract of the plant has been used in the treatment of erectile dysfunction (ED). No study has been found on the phytochemical constituents and identification of corresponding biological activities in water and polar extract. This study is aimed to identify phytoconstituents of a decoction and ethanol extract from the aerial parts of P. pruatjan Molk. Liquid chromatography-tandem mass spectroscopy (LC-MS/MS) was used to analyze and predict the bioactive compounds in both extracts. LC-MS/MS revealed both extracts contained two important compounds: Luteolin-7-O-ß-D glucopyranoside and Undulatoside A. Luteolin and Luteolin glucoside are also found in P.anisum L. Lutein 7-O glucoside was found in water extract, while more bioactive compounds, including populnin, 3,5-O-dicaffeoylquinic acid, quercetin-3'- O glucoside, methylophiopogononeone-A, kaempferol-7-O-α-L-arabinofuranoside, and 7-hydroxy-3,5,6,3',4'- pentamethoxyflavone, were found in ethanol extract. Accumulation of flavonoids, phenols, phenylpropanoids, alkaloids, and furanochromone in low quantities was observed in both extracts. This is the first report providing evidence justifying its use as a traditional medicine. Further investigation into the pharmacology mechanism of action is required.

3.
Nat Prod Res ; 37(5): 782-787, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796788

RESUMO

Fucoxanthin demonstrates potential bioactivity, gaining greater interest with many prospective applications. The fundamental activity of fucoxanthin is antioxidant. However, some findings also report the pro-oxidant potential of carotenoids in particular concentrations and environments. In many applications, fucoxanthin requires additional materials to improve bioavailability and stability, such as lipophilic plant products (LPP). Despite much-growing evidence, little is known how fucoxanthin interacts with LPP, which is susceptible to an oxidative reaction. We hypothesised that lower concentration of fucoxanthin exerts a synergistic effect in combination with LPP. The low molecular weight of LPP may exhibit greater activity than long-chain LPP, and so it does with the concentration of unsaturated moieties. We performed free radical-scavenging assay of fucoxanthin combined with some essential oils and edible oils. Chou-Talalay theorem was employed to depict the combination effect. The current study demonstrates a staple finding and constitutes theoretical viewpoints before further fucoxanthin's utilization with LPP.


Assuntos
Antioxidantes , Xantofilas , Antioxidantes/farmacologia , Carotenoides , Radicais Livres
4.
Front Nutr ; 9: 891339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757255

RESUMO

The metabolic syndrome (MS) is a multifactorial syndrome associated with a significant economic burden and healthcare costs. MS management often requires multiple treatments (polydrug) to ameliorate conditions such as diabetes mellitus, insulin resistance, obesity, cardiovascular diseases, hypertension, and non-alcoholic fatty liver disease (NAFLD). However, various therapeutics and possible drug-drug interactions may also increase the risk of MS by altering lipid and glucose metabolism and promoting weight gain. In addition, the medications cause side effects such as nausea, flatulence, bloating, insomnia, restlessness, asthenia, palpitations, cardiac arrhythmias, dizziness, and blurred vision. Therefore, is important to identify and develop new safe and effective agents based on a multi-target approach to treat and manage MS. Natural products, such as curcumin, have multi-modalities to simultaneously target several factors involved in the development of MS. This review discusses the recent preclinical and clinical findings, and up-to-date meta-analysis from Randomized Controlled Trials regarding the effects of curcumin on MS, as well as the metabonomics and a pharma-metabolomics outlook considering curcumin metabolites, the gut microbiome, and environment for a complementary personalized prevention and treatment for MS management.

5.
Oxid Med Cell Longev ; 2022: 3486257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387261

RESUMO

We previously annotated the phytochemical constituents of a root extract from Ximenia americana var. caffra and highlighted its hepatoprotective and hypoglycemic properties. We here extended our study on the leaf extract and identified its phytoconstituents using HPLC-PDA-ESI-MS/MS. In addition, we explored its antioxidant, antibacterial, and antiaging activities in vitro and in an animal model, Caenorhabditis elegans. Results from HPLC-PDA-ESI-MS/MS confirmed that the leaves contain 23 secondary metabolites consisting of condensed tannins, flavonol glycosides, flavone glycosides, and flavonol diglycosides. The leaf extract demonstrated significant antioxidant activity in vitro with IC50 value of 5 µg/mL in the DPPH assay and 18.32 µg/mL in the FRAP assay. It also inhibited four enzymes (collagenase, elastase, hyaluronidase, and tyrosinase) crucially involved in skin remodeling and aging processes with comparable activities to reference drugs along with four pure secondary metabolites identified from the extract. In accordance with the in vitro result, in vivo tests using two transgenic strains of C. elegans demonstrated its ability to reverse oxidative stress. Evidence included an increased survival rate in nematodes treated with the prooxidant juglone to 68.9% compared to the 24.8% in untreated worms and a reduced accumulation of intracellular reactive oxygen species (ROS) in a dose-dependent manner to 77.8%. The leaf extract also reduced levels of the expression of HSP 16.2 in a dose-dependent manner to 86.4%. Nuclear localization of the transcription factor DAF-16 was up to 10 times higher in worms treated with the leaf extract than in the untreated worms. The extract also inhibited the biofilm formation of Pseudomonas aeruginosa (a pathogen in skin infections) and reduced the swimming and swarming mobilities in a dose-dependent fashion. In conclusion, leaves of X. americana are a promising candidate for preventing oxidative stress-induced conditions, including skin aging.


Assuntos
Cosmecêuticos , Olacaceae , Animais , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Cosmecêuticos/metabolismo , Cosmecêuticos/farmacologia , Glicosídeos/farmacologia , Olacaceae/metabolismo , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
6.
BMC Res Notes ; 14(1): 454, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922615

RESUMO

OBJECTIVE: Cisplatin is a conventional anticancer drug that generates reactive oxygen species and causes apoptosis. However, many cancer cells develop alterations in the ATP binding cassette transporter responsible for the uptake and efflux process, which leads to resistance. Many natural products have shown potential to compete with ATP binding cassette transporter and may sensitize resistant cells to cisplatin. Studies have shown pro-oxidant effect of carotenoids that promote apoptosis of cancer cells. Bixin and fucoxanthin are well-known carotenoids with known antioxidant properties, however their bioactivity in lung cancer cells, clinically known to develop resistance due to ATP binding cassette transporter, has been minimally studied. This study is the first to investigate the potential of bixin and fucoxanthin to sensitize human lung cancer cell line, A549 and cervical cancer cell line, HeLa, to cisplatin. Drug combination method developed by Chou and Talalay theorem was employed. RESULT: Employing the best combination ratio, this study shows selective sensitization of cancer cells to cisplatin after bixin and fucoxanthin treatment. Further study on the mechanism of action in specific types of cancer cells is warranted. It may improve cisplatin sensitivity in tumors and rational use of cancer drugs.


Assuntos
Neoplasias Pulmonares , Neoplasias do Colo do Útero , Carotenoides , Cisplatino/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Xantofilas
7.
Biomed Pharmacother ; 144: 112138, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34750026

RESUMO

Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...