Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(17): 7822-7833, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446576

RESUMO

Covalent organic frameworks (COFs) are promising hosts in heterogeneous catalysis. Herein, we report a dual metalation strategy in a single two-dimensional-COF TpBpy for performing a variety of C-N cross-coupling reactions. [Ir(ppy)2(CH3CN)2]PF6 [ppy = 2-phenylpyridine], containing two labile CH3CN groups, and NiCl2 are used as iridium and nickel-metal precursors, respectively, for postsynthetic decoration of the TpBpy COF. Moving from the traditional approach, we focus on the COF-backbone host for visible-light-mediated nickel-catalyzed C-N coupling reactions. The controlled metalation and recyclability without deactivation of both catalytic centers are unique with respect to previously reported coupling strategies. We performed various photoluminescence, electrochemical, kinetic, and Hammett correlation studies to understand the salient features of the catalyst and reaction mechanism. Furthermore, theoretical calculations delineated the feasibility of electron transfer from the Ir center to the Ni center inside the confined pore of the TpBpy COF. The dual metal anchoring within the COF backbone prevented nickel-black formation. The developed protocol enables selective and reproducible coupling of a diverse range of amines (aryl, heteroaryl, and alkyl), carbamides, and sulfonamides with electron-rich, neutral, and poor (hetero) aryl iodides up to 94% isolated yield. The reaction can also be performed on a gram scale. Furthermore, to establish the practical implementation of this approach, we have applied the synthetic strategy for the late-stage diversification of the derivatives of ibuprofen, naproxen, gemfibrozil, helional, and amino acids. The methodology could also be applied to synthesize pharmacophore N,5-diphenyloxazol-2-amine and Food and Drug Administration-approved drugs, including flufenamic acid, flibanserin, and tripelennamine.


Assuntos
Estruturas Metalorgânicas , Aminas , Catálise , Elétrons , Luz , Estruturas Metalorgânicas/química , Níquel/química
2.
Phys Chem Chem Phys ; 24(18): 10906-10914, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451436

RESUMO

Tight-binding approaches bridge the gap between force field methods and Density Functional Theory (DFT). Density Functional Tight Binding (DFTB) has been employed for a wide range of systems including proteins, clays and 2D and 3D materials. DFTB is 2-3 orders of magnitude faster than DFT, allowing calculations containing up to ca. 5000 atoms. The efficiency of DFTB comes via pre-computed integrals, which are parameterized for each pair of atoms, and the requirement for this parameterization has previously prevented widespread use of DFTB for Metal-Organic Frameworks. The GFN-xTB (Geometries, Frequencies, and Non-covalent interactions Tight Binding) method provides parameters for elements up to Z ≤ 86. We have therefore employed GFN-xTB to periodic optimizations of the Computation Ready Experimental (CoRE) database of MOF structures. We find that 75% of all cell parameters remain within 5% of the reference (experimental) value and that bonds containing metal atoms are typically well conserved with a mean average deviation of 0.187 Å. Therefore GFN-xTB provides the ability to calculate MOF structures more accurately than force fields, and ca. 2 orders of magnitude faster than DFT. We therefore propose that GFN-xTB is a suitable method for screening of hypothetical MOFs (Z ≤ 86), with the advantage of accurate binding energies for adsorption applications.


Assuntos
Estruturas Metalorgânicas , Adsorção , Metais , Fenômenos Físicos
3.
Chem Sci ; 10(38): 8889-8894, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31762974

RESUMO

The two-dimensional structural features of covalent organic frameworks (COFs) can promote the electrochemical storage of cations like H+, Li+, and Na+ through both faradaic and non-faradaic processes. However, the electrochemical storage of cations like Zn2+ ion is still unexplored although it bears a promising divalent charge. Herein, for the first time, we have utilized hydroquinone linked ß-ketoenamine COF acting as a Zn2+ anchor in an aqueous rechargeable zinc ion battery. The charge-storage mechanism comprises of an efficient reversible interlayer interaction of Zn2+ ions with the functional moieties in the adjacent layers of COF (-182.0 kcal mol-1). Notably, due to the well-defined nanopores and structural organization, a constructed full cell, displays a discharge capacity as high as 276 mA h g-1 at a current rate of 125 mA g-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...