Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(37): 7410-7414, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36093846

RESUMO

Herein, a one-pot bienzymatic cascade containing an ene and a naphthol reductase is developed. It is applied for the synthesis of (+)-(3R,4R)-teratosphaerone B, its non-natural regioisomer in both cis- and trans-forms and (+)-xylarenone by the reduction of chemically synthesized naphthoquinone precursors in high yields (76-92%) and excellent ee (>99%). This work implies similar biosynthetic steps in the formation of the synthesized natural products.


Assuntos
Produtos Biológicos , Naftoquinonas , Naftóis , Oxirredutases
2.
Med Chem ; 18(5): 536-543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34702153

RESUMO

BACKGROUND: Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported. OBJECTIVE: The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action. METHODS: Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined. RESULTS: In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug Acetylsalicylic Acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase- 1. CONCLUSION: The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3- carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.


Assuntos
Compostos Heterocíclicos , Inibidores da Agregação Plaquetária , Aspirina/farmacologia , Plaquetas , Compostos Heterocíclicos/farmacologia , Humanos , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia
3.
J Org Chem ; 85(13): 8405-8414, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32469216

RESUMO

A water-mediated and catalyst-free practical method for the synthesis of a new series of pharmaceutically interesting functionalized 5-(2-arylimidazo[1,2-a]pyridin-3-yl)pyrimidine-2,4(1H,3H)-diones has been accomplished based on a one-pot multicomponent reaction between arylglyoxal monohydrates, 2-aminopyridines/2-aminopyrimidine, and barbituric/N,N-dimethylbarbituric acids under reflux conditions. The salient features of this protocol are avoidance of any additive/catalyst and toxic organic solvents, use of water as reaction medium, clean reaction profiles, operational simplicity, ease of product isolation/purification without the aid of tedious column chromatography, good to excellent yields, and high atom-economy and low E-factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...