Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(2): 2462-2475, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687109

RESUMO

In this work, a new OntoPESScan ontology is developed for the semantic representation of one-dimensional potential energy surface (PES) scans, a central concept in computational chemistry. This ontology is developed in line with knowledge graph principles and The World Avatar (TWA) project. OntoPESScan is linked to other ontologies for chemistry in TWA, including OntoSpecies, which helps uniquely identify species along the PES and access their properties, and OntoCompChem, which allows the association of potential energy surfaces with quantum chemical calculations and the concepts used to derive them. A force-field fitting agent is also developed that makes use of the information in the OntoPESScan ontology to fit force fields to reactive surfaces of interest on the fly by making use of the empirical valence bond methodology. This agent is demonstrated to successfully parametrize two cases, namely, a PES scan on ethanol and a PES scan on a localized π-radical PAH hypothesized to play a role in soot formation during combustion. OntoPESScan is an extension to the capabilities of TWA and, in conjunction with potential further ontological support for molecular dynamics and reactions, will further progress toward an open, continuous, and self-growing knowledge graph for chemistry.

2.
J Am Chem Soc ; 144(26): 11713-11728, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731954

RESUMO

Metal-organic polyhedra (MOPs) are hybrid organic-inorganic nanomolecules, whose rational design depends on harmonious consideration of chemical complementarity and spatial compatibility between two or more types of chemical building units (CBUs). In this work, we apply knowledge engineering technology to automate the derivation of MOP formulations based on existing knowledge. For this purpose we have (i) curated relevant MOP and CBU data; (ii) developed an assembly model concept that embeds rules in the MOP construction; (iii) developed an OntoMOPs ontology that defines MOPs and their key properties; (iv) input agents that populate The World Avatar (TWA) knowledge graph; and (v) input agents that, using information from TWA, derive a list of new constructible MOPs. Our result provides rapid and automated instantiation of MOPs in TWA and unveils the immediate chemical space of known MOPs, thus shedding light on new MOP targets for future investigations.

3.
ACS Omega ; 6(37): 23764-23775, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34568656

RESUMO

In this paper, the ability of three selected machine learning neural and baseline models in predicting the power conversion efficiency (PCE) of organic photovoltaics (OPVs) using molecular structure information as an input is assessed. The bidirectional long short-term memory (gFSI/BiLSTM), attentive fingerprints (attentive FP), and simple graph neural networks (simple GNN) as well as baseline support vector regression (SVR), random forests (RF), and high-dimensional model representation (HDMR) methods are trained to both the large and computational Harvard clean energy project database (CEPDB) and the much smaller experimental Harvard organic photovoltaic 15 dataset (HOPV15). It was found that the neural-based models generally performed better on the computational dataset with the attentive FP model reaching a state-of-the-art performance with the test set mean squared error of 0.071. The experimental dataset proved much harder to fit, with all of the models exhibiting a rather poor performance. Contrary to the computational dataset, the baseline models were found to perform better than the neural models. To improve the ability of machine learning models to predict PCEs for OPVs, either better computational results that correlate well with experiments or more experimental data at well-controlled conditions are likely required.

4.
J Chem Inf Model ; 61(8): 3868-3880, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34338504

RESUMO

This paper describes the implementation and evaluation of a proof-of-concept Question Answering (QA) system for accessing chemical data from knowledge graphs (KGs) which offer data from chemical kinetics to the chemical and physical properties of species. We trained the question classification and named the entity recognition models that specialize in interpreting chemistry questions. The system has a novel design which applies a topic model to identify the question-to-ontology affiliation to handle ontologies with different structures. The topic model also helps the system to provide answers with a higher quality. Moreover, a new method that automatically generates training questions from ontologies is also implemented. The question set generated for training contains 432,989 questions under 11 types. Such a training set has been proven to be effective for training both the question classification model and the named entity recognition model. We evaluated the system using other KGQA systems as baselines. The system outperforms the chosen KGQA system answering chemistry-related questions. The QA system is also compared to the Google search engine and the WolframAlpha engine. It shows that the QA system can answer certain types of questions better than the search engines.


Assuntos
Ferramenta de Busca
5.
J Chem Inf Model ; 60(1): 108-120, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31846323

RESUMO

An ontology for capturing both data and the semantics of chemical kinetic reaction mechanisms has been developed. Such mechanisms can be applied to simulate and understand the behavior of chemical processes, for example, the emission of pollutants from internal combustion engines. An ontology development methodology was used to produce the semantic model of the mechanisms, and a tool was developed to automate the assertion process. As part of the development methodology, the ontology is formally represented using a web ontology language (OWL), assessed by domain experts, and validated by applying a reasoning tool. The resulting ontology, termed OntoKin, has been used to represent example mechanisms from the literature. OntoKin and its instantiations are integrated to create a knowledge base (KB), which is deployed using the RDF4J triple store. The use of the OntoKin ontology and the KB is demonstrated for three use cases-querying across mechanisms, modeling atmospheric pollution dispersion, and as a mechanism browser tool. As part of the query use case, the OntoKin tools have been applied by a chemist to identify variations in the rate of a prompt NOx formation reaction in the combustion of ammonia as represented by four mechanisms in the literature.


Assuntos
Modelos Químicos , Semântica , Cinética , Software
6.
J Chem Inf Model ; 59(7): 3154-3165, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31150242

RESUMO

The purpose of this article is to present an ontology, termed OntoCompChem, for quantum chemistry calculations as performed by the Gaussian quantum chemistry software, as well as a semantic web service named MolHub. The OntoCompChem ontology has been developed based on the semantics of concepts specified in the CompChem convention of Chemical Markup Language (CML) and by extending the Gainesville Core (GNVC) ontology. MolHub is developed in order to establish semantic interoperability between different tools used in quantum chemistry and thermochemistry calculations, and as such is integrated into the J-Park Simulator (JPS)-a multidomain interactive simulation platform and expert system. It uses the OntoCompChem ontology and implements a formal language based on propositional logic as a part of its query engine, which verifies satisfiability through reasoning. This paper also presents a NASA polynomial use-case scenario to demonstrate semantic interoperability between Gaussian and a tool for thermodynamic data calculations within MolHub.


Assuntos
Fenômenos Químicos , Software , Terminologia como Assunto , Internet , Modelos Moleculares , Estrutura Molecular , Termodinâmica
7.
J Phys Chem A ; 119(30): 8376-87, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26114649

RESUMO

The thermal decomposition of titanium tetraisopropoxide (TTIP) is investigated using quantum chemistry, statistical thermodynamics, and equilibrium composition analysis. A set of 981 Ti-containing candidate species are proposed systematically on the basis of the thermal breakage of bonds within a TTIP molecule. The ground state geometry, vibrational frequencies and hindrance potentials are calculated for each species at the B97-1/6-311+G(d,p) level of theory. Thermochemical data are computed by applying statistical thermodynamics and, if unknown, the standard enthalpy of formation is estimated using balanced reactions. Equilibrium composition calculations are performed under typical combustion conditions for premixed flames. The thermodynamically stable decomposition products for different fuel mixtures are identified. A strong positive correlation is found between the mole fractions of Ti species containing carbon and the TTIP precursor concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...