Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 562(7727): E22, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30013120

RESUMO

In this Letter, the received date should have been 23 March 2017 instead of 13 April 2018. Authors R.M.K. and O.D.K. were incorrectly denoted as 'equally contributing' authors. The labels for 'control' and 'IFNγ' in Extended Data Fig. 4g were reversed. These have been corrected online.

2.
Nature ; 559(7712): 109-113, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950724

RESUMO

Epithelial surfaces form critical barriers to the outside world and are continuously renewed by adult stem cells1. Whereas dynamics of epithelial stem cells during homeostasis are increasingly well understood, how stem cells are redirected from a tissue-maintenance program to initiate repair after injury remains unclear. Here we examined infection by Heligmosomoides polygyrus, a co-evolved pathosymbiont of mice, to assess the epithelial response to disruption of the mucosal barrier. H. polygyrus disrupts tissue integrity by penetrating the duodenal mucosa, where it develops while surrounded by a multicellular granulomatous infiltrate2. Crypts overlying larvae-associated granulomas did not express intestinal stem cell markers, including Lgr53, in spite of continued epithelial proliferation. Granuloma-associated Lgr5- crypt epithelium activated an interferon-gamma (IFN-γ)-dependent transcriptional program, highlighted by Sca-1 expression, and IFN-γ-producing immune cells were found in granulomas. A similar epithelial response accompanied systemic activation of immune cells, intestinal irradiation, or ablation of Lgr5+ intestinal stem cells. When cultured in vitro, granuloma-associated crypt cells formed spheroids similar to those formed by fetal epithelium, and a sub-population of H. polygyrus-induced cells activated a fetal-like transcriptional program, demonstrating that adult intestinal tissues can repurpose aspects of fetal development. Therefore, re-initiation of the developmental program represents a fundamental mechanism by which the intestinal crypt can remodel itself to sustain function after injury.


Assuntos
Feto/citologia , Helmintos/fisiologia , Intestinos/citologia , Parasitos/fisiologia , Nicho de Células-Tronco , Células-Tronco/citologia , Animais , Antígenos Ly/biossíntese , Células Epiteliais/citologia , Feminino , Feto/metabolismo , Interferon gama/imunologia , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Nematospiroides dubius/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Infecções por Strongylida/parasitologia
3.
Cell Stem Cell ; 12(4): 389-90, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23561439

RESUMO

Two recent studies continue the debate regarding lineage and hierarchy in the intestinal epithelium. One reports that quiescent crypt cells are Paneth cell precursors (Buczacki et al., 2013). The second shows that tamoxifen induces apoptosis in crypt cells and that suppressing apoptosis alters lineage tracing patterns (Zhu et al., 2013).

4.
PLoS One ; 2(9): e945, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17895986

RESUMO

BACKGROUND: The Wnt signaling system plays key roles in development, regulation of stem cell self-renewal and differentiation, cell polarity, morphogenesis and cancer. Given the multifaceted roles of Wnt signaling in these processes, its transcriptional effects on the stromal cells that make up the scaffold and infrastructure of epithelial tissues are of great interest. METHODS AND RESULTS: To begin to investigate these effects, we used DNA microarrays to identify transcriptional targets of the Wnt pathway in human lung fibroblasts. Cells were treated with active Wnt3a protein in culture, and RNA was harvested at 4 hours and 24 hours. Nuclear accumulation of ss-Catenin, as shown by immunofluorescence, and induction of AXIN2 demonstrate that fibroblasts are programmed to respond to extracellular Wnt signals. In addition to several known Wnt targets, we found many new Wnt induced genes, including many transcripts encoding regulatory proteins. Transcription factors with important developmental roles, including HOX genes, dominated the early transcriptional response. Furthermore, we found differential expression of several genes that play direct roles in the Wnt signaling pathway, as well as genes involved in other cell signaling pathways including fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signaling. The gene most highly induced by Wnt3a was GREMLIN2, which encodes a secreted BMP antagonist. CONCLUSIONS: Elevated expression of GREMLIN2 suggests a new role for Wnt signals in the maintenance of stem cell niches, whereby Wnt signals induce nearby fibroblasts to produce a BMP antagonist, inhibiting differentiation and promoting expansion of stem cells in their microenvironment. We suggest that Wnt-induced changes in the gene expression program of local stromal cells may play an important role in the establishment of specialized niches hospitable to the self-renewal of normal or malignant epithelial stem cells in vivo.


Assuntos
Fibroblastos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas Wnt/farmacologia , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Folistatina/genética , Proteínas de Homeodomínio/genética , Humanos , Pulmão/citologia , Pulmão/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...