Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 21(3): 240-252, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36490322

RESUMO

Since its establishment in 2015, the transcriptomics-based consensus molecular subtype (CMS) classification has unified our understanding of colorectal cancer. Each of the four CMS exhibited distinctive high-level molecular signatures that correlated well with prognosis and treatment response. Nonetheless, many key aspects of colorectal cancer progression and intra-subtype heterogeneity remain unresolved. This is partly because the bulk transcriptomic data used to define CMS contain substantial interference from non-tumor cells. Here, we propose a concise panel of 62 genes that not only accurately recapitulates all key characteristics of the four original CMS but also identifies three additional subpopulations with unique molecular signatures. Validation on independent cohorts confirms that the new CMS4 intra-subtypes coincide with single-cell-derived intrinsic subtypes and that the panel consists of many immune cell-type markers that can capture the status of tumor microenvironment. Furthermore, a 2D embedding of CMS structure based on the proposed gene panel provides a high-resolution view of the functional pathways and cell-type markers that underlie each CMS intra-subtype and the continuous progression from CMS2 to CMS4 subtypes. Our gene panel and 2D visualization refined the delineation of colorectal cancer subtypes and could aid further discovery of molecular mechanisms in colorectal cancer. IMPLICATIONS: : Well-selected gene panel and representation can capture both the continuum of cancer cell states and tumor microenvironment status.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Transcriptoma , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética
2.
Asian Pac J Cancer Prev ; 22(11): 3671-3678, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837926

RESUMO

BACKGROUND: LIN28B is functionally driving malignant transformation and relevance to the worse disease outcomes by promoting cancer aggressiveness. However, a typical role of LIN28B in cholangiocarcinoma (CCA) is primarily unknown. In this study, the tumorigenic potential of LIN28B in the cholangiocyte context was investigated. METHODS: Stable LIN28B expression in MMNK-1 cells was generated by infecting with retrovirus-containing LIN28B gene. LIN28B-overexpressing cells were further validated the amount of released cytokines by using human cytokine arrays. After treatment of chemo-drugs, cell viability was subsequently measured using MTT assay. Aldehyde dehydrogenase (ALDH) activity was determined using ALDEFLUOR assay Kit and analyzed by flow cytometry. The mRNA and protein expression levels were respectively assayed by RT-qPCR and western blot. RESULTS: Cytokine release results showed that numerous inflammatory cytokines-chemokines related to cancer initiation and development, such as IL-8, IL-6, VEGF, MCP1, TNF-α were significantly increased in LIN28B-overexpressing MMNK-1 cells. Drug sensitivity test showed that LIN28B-overexpressing MMNK-1 treated cells had a high percentage of cell viability compared to MMNK-1-control treated cells. Activity and expression level of a cancer stem cell marker, ALDH was significantly elevated in LIN28B-overexpressing MMNK-1 cells. Moreover, the activation of an oncogenic signaling pathway, signal transducer and activator of transcription 3 (STAT3) was enhanced in LIN28B-overexpressing MMNK-1 cells. Whereas, growth capacity of LIN28B-overexpressing MMNK-1 cells was found to be reduced in STAT3 inhibition. CONCLUSION: LIN28B can regulate the inflammatory response and resistance to chemotherapy of cholangiocytes through modulation of STAT3 signaling pathway.A recent study suggests that activated cholangiocytes can be induced by regulation of LIN28B/STAT3 pathway and this may partially contribute to the initiating CCA. Here, LIN28B and its downstream signaling could be considered as an attractive therapeutic target in patients with CCA.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Ligação a RNA/fisiologia , Fator de Transcrição STAT3/metabolismo , Ductos Biliares/citologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citocinas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Oncogenes/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...