Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2321344121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830107

RESUMO

The estrogen receptor-α (ER) is thought to function only as a homodimer but responds to a variety of environmental, metazoan, and therapeutic estrogens at subsaturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations-receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining the binding of the same ligand in crystal structures of ER in the agonist vs. antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist vs. antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from the ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric vs. dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing different modes for ligand-dependent regulation of ER activity.


Assuntos
Receptor alfa de Estrogênio , Estrogênios , Simulação de Dinâmica Molecular , Multimerização Proteica , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/química , Regulação Alostérica , Humanos , Ligantes , Estrogênios/metabolismo , Estrogênios/química , Sítios de Ligação , Ligação Proteica , Conformação Proteica
2.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38645081

RESUMO

The estrogen receptor-α (ER) is thought to function only as a homodimer, but responds to a variety of environmental, metazoan, and therapeutic estrogens at sub-saturating doses, supporting binding mixtures of ligands as well as dimers that are only partially occupied. Here, we present a series of flexible ER ligands that bind to receptor dimers with individual ligand poses favoring distinct receptor conformations -receptor conformational heterodimers-mimicking the binding of two different ligands. Molecular dynamics simulations showed that the pairs of different ligand poses changed the correlated motion across the dimer interface to generate asymmetric communication between the dimer interface, the ligands, and the surface binding sites for epigenetic regulatory proteins. By examining binding of the same ligand in crystal structures of ER in the agonist versus antagonist conformers, we also showed that these allosteric signals are bidirectional. The receptor conformer can drive different ligand binding modes to support agonist versus antagonist activity profiles, a revision of ligand binding theory that has focused on unidirectional signaling from ligand to the coregulator binding site. We also observed differences in the allosteric signals between ligand and coregulator binding sites in the monomeric versus dimeric receptor, and when bound by two different ligands, states that are physiologically relevant. Thus, ER conformational heterodimers integrate two different ligand-regulated activity profiles, representing new modes for ligand-dependent regulation of ER activity. Significance: The estrogen receptor-α (ER) regulates transcription in response to a hormonal milieu that includes low levels of estradiol, a variety of environmental estrogens, as well as ER antagonists such as breast cancer anti-hormonal therapies. While ER has been studied as a homodimer, the variety of ligand and receptor concentrations in different tissues means that the receptor can be occupied with two different ligands, with only one ligand in the dimer, or as a monomer. Here, we use X-ray crystallography and molecular dynamics simulations to reveal a new mode for ligand regulation of ER activity whereby sequence-identical homodimers can act as functional or conformational heterodimers having unique signaling characteristics, with ligand-selective allostery operating across the dimer interface integrating two different signaling outcomes.

3.
Res Sq ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37546719

RESUMO

Oligomerization of proteins and their modified forms (proteoforms) produces functional protein complexes 1,2. Complexoforms are complexes that consist of the same set of proteins with different proteoforms 3. The ability to characterize these assemblies within cells is critical to understanding the molecular mechanisms involved in disease and to designing effective drugs. An outstanding biological question is how proteoforms drive function and oligomerization of complexoforms. However, tools to define endogenous proteoform-proteoform/ligand interactions are scarce 4. Here, we present a native top-down proteomics (nTDP) strategy that combines size-exclusion chromatography, nano liquid-chromatography in direct infusion mode, field asymmetric ion mobility spectrometry, and multistage mass spectrometry to identify protein assemblies (≤70 kDa) in breast cancer cells and in cells that overexpress EGFR, a resistance model of estrogen receptor-α (ER-α) targeted therapies. By identifying ~104 complexoforms from 17 protein complexes, our nTDP approach revealed several molecular features of the breast cancer proteome, including EGFR-induced dissociation of nuclear transport factor 2 (NUTF2) assemblies that modulate ER activity. Our findings show that the K4 and K55 posttranslational modification sites discovered with nTDP differentially impact the effects of NUTF2 on the inhibition of the ER signaling pathway. By characterizing endogenous proteoform-proteoform/ligand interactions, we reveal the molecular diversity of complexoforms, which allows us to propose a model for ER drug discovery in the context of designing effective inhibitors to selectively bind and disrupt the actions of targeted ER complexoforms.

4.
Eur J Med Chem ; 246: 115011, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516582

RESUMO

Multi-target compounds have become increasingly important for the development of safer and more effective drug candidates. In this work, we devised a combined ligand-based and structure-based multi-target repurposing strategy and applied it to a series of hexahydrocyclopenta[c]quinoline compounds synthesized previously. The in silico analyses identified human Carbonic Anhydrases (hCA) and Estrogen Receptors (ER) as top scoring candidates for dual modulation. hCA isoforms IX and XII, and ER subtypes ER⍺ and/or ERß are co-expressed in various cancer cell types, including breast and prostate cancer cells. ER⍺ is the primary target of anti-estrogen therapy in breast cancer, and the hCA IX isoform is a therapeutic target in triple-negative breast cancer. ER⍺-mediated transcriptional programs and hCA activity in cancer cells promote favorable microenvironments for cell proliferation. Interestingly, several lines of evidence indicate that the combined modulation of these two targets may provide significant therapeutic benefits. Moving from these first results, two additional hexahydrocyclopenta[c]quinoline derivatives bearing a sulfonamide zinc binding group (hCA) and a phenolic hydroxyl (ER) pharmacophoric group placed at the appropriate locations were designed and synthesized. Interestingly, these compounds were able to directly modulate the activities of both hCA and ER targets. In cell-based assays, they inhibited proliferation of breast and prostate cancer cells with micromolar potency and cell type-selective efficacy. The compounds inhibited hCA activity with nanomolar potency and isoform-selectivity. In transactivation assays, they reduced estrogen-driven ER activity with micro-molar potency. Finally, crystal structures of the synthesized ligands in complex with the two targets revealed that the compounds bind directly to the hCA active site, as well as to the ER ligand-binding domain, providing structural explanation to the observed activity and a rationale for optimization of their dual activity. To the best of our knowledge, this work describes the design, synthesis and biological characterization of the first dual modulators of hCA and ER, laying the ground for the structure-based optimization of their multi-target activity.


Assuntos
Anidrases Carbônicas , Neoplasias da Próstata , Humanos , Masculino , Anidrases Carbônicas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Receptores de Estrogênio , Ligantes , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias/metabolismo , Inibidores da Anidrase Carbônica/química , Microambiente Tumoral
5.
Sci Adv ; 8(48): eadd4150, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449624

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 as its primary infection mechanism. Interactions between S and endogenous proteins occur after infection but are not well understood. We profiled binding of S against >9000 human proteins and found an interaction between S and human estrogen receptor α (ERα). Using bioinformatics, supercomputing, and experimental assays, we identified a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects. Non-invasive imaging in SARS-CoV-2-infected hamsters localized lung pathology with increased ERα lung levels. Postmortem lung experiments from infected hamsters and humans confirmed an increase in cytoplasmic ERα and its colocalization with S in alveolar macrophages. These findings describe the discovery of a S-ERα interaction, imply a role for S as an NRC, and advance knowledge of SARS-CoV-2 biology and coronavirus disease 2019 pathology.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Humanos , Receptores de Estrogênio , Receptor alfa de Estrogênio , SARS-CoV-2
6.
bioRxiv ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35665018

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 (ACE2) at the cell surface, which constitutes the primary mechanism driving SARS-CoV-2 infection. Molecular interactions between the transduced S and endogenous proteins likely occur post-infection, but such interactions are not well understood. We used an unbiased primary screen to profile the binding of full-length S against >9,000 human proteins and found significant S-host protein interactions, including one between S and human estrogen receptor alpha (ERα). After confirming this interaction in a secondary assay, we used bioinformatics, supercomputing, and experimental assays to identify a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit and an S-ERα binding mode. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects and ACE2 expression. Noninvasive multimodal PET/CT imaging in SARS-CoV-2-infected hamsters using [ 18 F]fluoroestradiol (FES) localized lung pathology with increased ERα lung levels. Postmortem experiments in lung tissues from SARS-CoV-2-infected hamsters and humans confirmed an increase in cytoplasmic ERα expression and its colocalization with S protein in alveolar macrophages. These findings describe the discovery and characterization of a novel S-ERα interaction, imply a role for S as an NRC, and are poised to advance knowledge of SARS-CoV-2 biology, COVID-19 pathology, and mechanisms of sex differences in the pathology of infectious disease.

7.
FASEB J ; 35(12): e21999, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748223

RESUMO

The Creb-Regulated Transcriptional Coactivator (Crtc) family of transcriptional coregulators drive Creb1-mediated transcription effects on metabolism in many tissues, but the in vivo effects of Crtc2/Creb1 transcription on skeletal muscle metabolism are not known. Skeletal muscle-specific overexpression of Crtc2 (Crtc2 mice) induced greater mitochondrial activity, metabolic flux capacity for both carbohydrates and fats, improved glucose tolerance and insulin sensitivity, and increased oxidative capacity, supported by upregulation of key metabolic genes. Crtc2 overexpression led to greater weight loss during alternate day fasting (ADF), selective loss of fat rather than lean mass, maintenance of higher energy expenditure during the fast and reduced binge-eating during the feeding period. ADF downregulated most of the mitochondrial electron transport genes, and other regulators of mitochondrial function, that were substantially reversed by Crtc2-driven transcription. Glucocorticoids acted with AMPK to drive atrophy and mitophagy, which was reversed by Crtc2/Creb1 signaling. Crtc2/Creb1-mediated signaling coordinates metabolic adaptations in skeletal muscle that explain how Crtc2/Creb1 regulates metabolism and weight loss.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Metabolismo Energético , Jejum , Resistência à Insulina , Músculo Esquelético/fisiologia , Fatores de Transcrição/fisiologia , Redução de Peso/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos
8.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452998

RESUMO

Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cristalografia por Raios X , Feminino , Humanos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Nat Chem Biol ; 17(3): 307-316, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33510451

RESUMO

Glucocorticoids display remarkable anti-inflammatory activity, but their use is limited by on-target adverse effects including insulin resistance and skeletal muscle atrophy. We used a chemical systems biology approach, ligand class analysis, to examine ligands designed to modulate glucocorticoid receptor activity through distinct structural mechanisms. These ligands displayed diverse activity profiles, providing the variance required to identify target genes and coregulator interactions that were highly predictive of their effects on myocyte glucose disposal and protein balance. Their anti-inflammatory effects were linked to glucose disposal but not muscle atrophy. This approach also predicted selective modulation in vivo, identifying compounds that were muscle-sparing or anabolic for protein balance and mitochondrial potential. Ligand class analysis defined the mechanistic links between the ligand-receptor interface and ligand-driven physiological outcomes, a general approach that can be applied to any ligand-regulated allosteric signaling system.


Assuntos
Anti-Inflamatórios/farmacologia , Transportador de Glucose Tipo 4/genética , Atrofia Muscular/tratamento farmacológico , Receptores de Glucocorticoides/química , Transdução de Sinais/efeitos dos fármacos , Células A549 , Regulação Alostérica , Animais , Anti-Inflamatórios/síntese química , Linhagem Celular Transformada , Regulação da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Lipopolissacarídeos/administração & dosagem , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ratos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 29(7): 905-911, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30732944

RESUMO

Despite tremendous progress made in the understanding of the ERα signaling pathway and the approval of many therapeutic agents, ER+ breast cancer continues to be a leading cause of cancer death in women. We set out to discover compounds with a dual mechanism of action in which they not only compete with estradiol for binding with ERα, but also can induce the degradation of the ERα protein itself. We were attracted to the constrained chromenes containing a tetracyclic benzopyranobenzoxepine scaffold, which were reported as potent selective estrogen receptor modulators (SERMs). Incorporation of a fluoromethyl azetidine side chain yielded highly potent and efficacious selective estrogen receptor degraders (SERDs), such as 16aa and surprisingly, also its enantiomeric pair 16ab. Co-crystal structures of the enantiomeric pair 16aa and 16ab in complex with ERα revealed default (mimics the A-D rings of endogenous ligand estradiol) and core-flipped binding modes, rationalizing the equivalent potency observed for these enantiomers in the ERα degradation and MCF-7 anti-proliferation assays.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Receptor alfa de Estrogênio/química , Antineoplásicos/química , Benzopiranos/química , Cristalização , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
11.
Elife ; 72018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30489256

RESUMO

Acquired resistance to endocrine therapy remains a significant clinical burden for breast cancer patients. Somatic mutations in the ESR1 (estrogen receptor alpha (ERα)) gene ligand-binding domain (LBD) represent a recognized mechanism of acquired resistance. Antiestrogens with improved efficacy versus tamoxifen might overcome the resistant phenotype in ER +breast cancers. Bazedoxifene (BZA) is a potent antiestrogen that is clinically approved for use in hormone replacement therapies. We found that BZA possesses improved inhibitory potency against the Y537S and D538G ERα mutants compared to tamoxifen and has additional inhibitory activity in combination with the CDK4/6 inhibitor palbociclib. In addition, comprehensive biophysical and structural biology studies show BZA's selective estrogen receptor degrading (SERD) properties that override the stabilizing effects of the Y537S and D538G ERα mutations.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor alfa de Estrogênio/química , Indóis/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Fulvestranto/farmacologia , Humanos , Indóis/química , Ligantes , Células MCF-7 , Proteínas Mutantes/metabolismo , Mutação/genética , Piperazinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Estrutura Secundária de Proteína , Piridinas/farmacologia , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/química , Relação Estrutura-Atividade , Tamoxifeno/farmacologia
12.
Nat Commun ; 9(1): 1337, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626214

RESUMO

Glucocorticoids (GCs) are potent repressors of NF-κB activity, making them a preferred choice for treatment of inflammation-driven conditions. Despite the widespread use of GCs in the clinic, current models are inadequate to explain the role of the glucocorticoid receptor (GR) within this critical signaling pathway. GR binding directly to NF-κB itself-tethering in a DNA binding-independent manner-represents the standing model of how GCs inhibit NF-κB-driven transcription. We demonstrate that direct binding of GR to genomic NF-κB response elements (κBREs) mediates GR-driven repression of inflammatory gene expression. We report five crystal structures and solution NMR data of GR DBD-κBRE complexes, which reveal that GR recognizes a cryptic response element between the binding footprints of NF-κB subunits within κBREs. These cryptic sequences exhibit high sequence and functional conservation, suggesting that GR binding to κBREs is an evolutionarily conserved mechanism of controlling the inflammatory response.


Assuntos
NF-kappa B/genética , NF-kappa B/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta , Substituição de Aminoácidos , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , NF-kappa B/química , Ressonância Magnética Nuclear Biomolecular , Receptores de Glucocorticoides/química , Fator de Necrose Tumoral alfa/metabolismo
13.
Nucleic Acids Res ; 45(14): 8596-8608, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28591827

RESUMO

The glucocorticoid receptor (GR) is a ligand-regulated transcription factor that controls the expression of extensive gene networks, driving both up- and down-regulation. GR utilizes multiple DNA-binding-dependent and -independent mechanisms to achieve context-specific transcriptional outcomes. The DNA-binding-independent mechanism involves tethering of GR to the pro-inflammatory transcription factor activator protein-1 (AP-1) through protein-protein interactions. This mechanism has served as the predominant model of GR-mediated transrepression of inflammatory genes. However, ChIP-seq data have consistently shown GR to occupy AP-1 response elements (TREs), even in the absence of AP-1. Therefore, the current model is insufficient to explain GR action at these sites. Here, we show that GR regulates a subset of inflammatory genes in a DNA-binding-dependent manner. Using structural biology and biochemical approaches, we show that GR binds directly to TREs via sequence-specific contacts to a GR-binding sequence (GBS) half-site found embedded within the TRE motif. Furthermore, we show that GR-mediated transrepression observed at TRE sites to be DNA-binding-dependent. This represents a paradigm shift in the field, showing that GR uses multiple mechanisms to suppress inflammatory gene expression. This work further expands our understanding of this complex multifaceted transcription factor.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Receptores de Glucocorticoides/genética , Elementos de Resposta/genética , Fator de Transcrição AP-1/genética , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição AP-1/química , Fator de Transcrição AP-1/metabolismo
16.
Mol Cell ; 65(6): 1122-1135.e5, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306507

RESUMO

Human breast cancers that exhibit high proportions of immune cells and elevated levels of pro-inflammatory cytokines predict poor prognosis. Here, we demonstrate that treatment of human MCF-7 breast cancer cells with pro-inflammatory cytokines results in ERα-dependent activation of gene expression and proliferation, in the absence of ligand or presence of 4OH-tamoxifen (TOT). Cytokine activation of ERα and endocrine resistance is dependent on phosphorylation of ERα at S305 in the hinge domain. Phosphorylation of S305 by IKKß establishes an ERα cistrome that substantially overlaps with the estradiol (E2)-dependent ERα cistrome. Structural analyses suggest that S305-P forms a charge-linked bridge with the C-terminal F domain of ERα that enables inter-domain communication and constitutive activity from the N-terminal coactivator-binding site, revealing the structural basis of endocrine resistance. ERα therefore functions as a transcriptional effector of cytokine-induced IKKß signaling, suggesting a mechanism through which the tumor microenvironment controls tumor progression and endocrine resistance.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/análogos & derivados , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Interleucina-1beta/metabolismo , Células MCF-7 , Simulação de Dinâmica Molecular , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Fosforilação , Conformação Proteica , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tamoxifeno/farmacologia , Transcrição Gênica , Transfecção , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
17.
Cell Chem Biol ; 24(1): 35-45, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28042045

RESUMO

Environmental estrogens and anti-hormone therapies for breast cancer have diverse tissue- and signaling-pathway-selective outcomes, but how estrogen receptor alpha (ERα) mediates this phenotypic diversity is poorly understood. We implemented a statistical approach to allow unbiased, parallel analyses of multiple crystal structures, and identified subtle perturbations of ERα structure by different synthetic and environmental estrogens. Many of these perturbations were in the sub-Å range, within the noise of the individual structures, but contributed significantly to the activities of synthetic and environmental estrogens. Combining structural perturbation data from many structures with quantitative cellular activity profiles of the ligands enabled identification of structural rules for ligand-specific allosteric signaling-predicting activity from structure. This approach provides a framework for understanding the diverse effects of environmental estrogens and for guiding iterative medicinal chemistry efforts to generate improved breast cancer therapies, an approach that can be applied to understanding other ligand-regulated allosteric signaling pathways.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios/metabolismo , Antineoplásicos Hormonais/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Dimerização , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas de Estrogênios/química , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
ACS Chem Biol ; 12(2): 494-503, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28032978

RESUMO

The estrogen receptors (ERs) bind with high affinity to many structurally diverse ligands by significantly distorting the contours of their ligand-binding pockets. This raises a question: To what degree is ER able to distinguish between structurally related regioisomers and enantiomers? We have explored the structural compliance and specificity of ERα with a set of ligands having a 7-oxa-bicyclo[2.2.1]hept-5-ene sulfonate core and basic side chains typical of selective ER modulators (SERMs). These ligands have two regioisomers, each of which is a racemate of enantiomers. Using orthogonal protecting groups and chiral HPLC, we isolated all 4 isomers and assigned their absolute stereochemistry by X-ray analysis. The 1S,2R,4S isomer has a 80-170-fold higher affinity for ERα than the others, and it profiles as a partial agonist/antagonist in cellular reporter gene assays and in suppressing proliferation of MCF-7 breast cancer cells with subnanomolar potency, far exceeding that of the other isomers. It is the only isomer found bound to ERα by X-ray analysis after crystallization with four-isomer mixtures of closely related analogs. Thus, despite the general compliance of this receptor for binding a large variety of ligand structures, ER demonstrates marked structural specificity and stereospecificity by selecting a single component from a mixture of structurally related isomers to drive ER-regulated cellular activity. Our findings lay the necessary groundwork for seeking unique ER-mediated pharmacological profiles by rational structural perturbations of two different types of side chains in this unprecedented class of ER ligands, which may prove useful in developing more effective endocrine therapies for breast cancer.


Assuntos
Receptores de Estrogênio/metabolismo , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Células Hep G2 , Humanos , Isomerismo , Ligantes , Células MCF-7 , Conformação Proteica , Receptores de Estrogênio/química
19.
Bioorg Med Chem Lett ; 27(2): 347-353, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27919657

RESUMO

Adverse effects of glucocorticoids could be limited by developing new compounds that selectively modulate anti-inflammatory activity of the glucocorticoid receptor (GR). We have synthesized a novel series of steroidal GR ligands, including potent agonists, partial agonists and antagonists with a wide range of effects on inhibiting secretion of interleukin-6. Some of these new ligands were designed to directly impact conformational stability of helix-12, in the GR ligand-binding domain (LBD). These compounds modulated GR activity and glucocorticoid-induced gene expression in a manner that was inversely correlated to the degree of inflammatory response. In contrast, compounds designed to directly modulate LBD epitopes outside helix-12, led to dissociated levels of GR-mediated gene expression and inflammatory response. Therefore, these new series of compounds and their derivatives will be useful to dissect the ligand-dependent features of GR signaling specificity.


Assuntos
Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Esteroides/farmacologia , Animais , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Receptores de Glucocorticoides/metabolismo , Esteroides/síntese química , Esteroides/química , Relação Estrutura-Atividade
20.
Nat Chem Biol ; 13(1): 111-118, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27870835

RESUMO

Resistance to endocrine therapies remains a major clinical problem for the treatment of estrogen receptor-α (ERα)-positive breast cancer. On-target side effects limit therapeutic compliance and use for chemoprevention, highlighting an unmet need for new therapies. Here we present a full-antagonist ligand series lacking the prototypical ligand side chain that has been universally used to engender antagonism of ERα through poorly understood structural mechanisms. A series of crystal structures and phenotypic assays reveal a structure-based design strategy with separate design elements for antagonism and degradation of the receptor, and access to a structurally distinct space for further improvements in ligand design. Understanding structural rules that guide ligands to produce diverse ERα-mediated phenotypes has broad implications for the treatment of breast cancer and other estrogen-sensitive aspects of human health including bone homeostasis, energy metabolism, and autoimmunity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...