Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 2): 131840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679255

RESUMO

The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/química , Humanos , Termodinâmica , Desenho de Fármacos
2.
Rural Remote Health ; 24(1): 7906, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346900

RESUMO

INTRODUCTION: The aim of the study was to determine the iron status of rural-dwelling pregnant Nigerian women in the second and third trimesters, and to predict their risk of giving birth to babies with suboptimal iron endowment. METHODS: This was a prospective cohort study conducted between April and August 2021. A total of 174 consecutive and consenting pregnant rural dwellers, who met the inclusion criteria, were recruited by convenience sampling from the antenatal clinic of a public hospital in Nsukka, a semirural town in south-east Nigeria. The study participants were aged 21-40 years, and their iron status was determined by measuring blood haemoglobin (Hb) and serum ferritin (SF) concentration. Hb concentration was determined by the cyanmethemoglobin method and the SF concentration was determined by enzyme immunoassay method. RESULTS: Almost half (47.7%) of the participants had Hb concentrations below 11 g/dL, while about two out of every five (40.8%) had SF concentrations less than 15 µg/L. The prevalence of iron deficiency, iron deficiency anaemia (IDA) and non-iron deficiency anaemia were 40.8%, 23.6% and 24.7%, respectively. The mean SF levels varied with maternal age, gestation stage, pregnancy intervals and the intake of iron supplements. The mean SF concentration was higher in the second trimester than in the third. The mean SF concentration ± standard deviation (37.10±3.02 µg/L) was higher in the group that took iron supplements than in the group that did not (20.76±2.11 µg/L). However, two out of five participants in both groups had SF concentrations less than 15.0 µg/L. CONCLUSION: The prevalence of IDA was quite high among the participants in both trimesters even with the widespread intake of the recommended oral iron supplements. About four out of 10 of the participants had SF concentrations of less than 15 µg/L and were thus judged at risk of giving birth to babies with poor iron deposits. Therefore, more effective strategies are needed to monitor and prevent IDA among pregnant women in rural populations of Nigeria and, by inference, other parts of tropical Africa.


Assuntos
Anemia Ferropriva , Ferro , Lactente , Feminino , Gravidez , Humanos , Terceiro Trimestre da Gravidez , Ferro da Dieta , População Rural , Estudos Prospectivos , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/prevenção & controle , Ferritinas , Hemoglobinas/análise , Hemoglobinas/metabolismo
3.
Heliyon ; 9(6): e17488, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416680

RESUMO

Advances in molecular pharmacology and an improved understanding of the mechanism of most diseases have created the need to specifically target the cells involved in the initiation and progression of diseases. This is especially true for most life-threatening diseases requiring therapeutic agents which have numerous side effects, thus requiring accurate tissue targeting to minimize systemic exposure. Recent drug delivery systems (DDS) are formulated using advanced technology to accelerate systemic drug delivery to the specific target site, maximizing therapeutic efficacy and minimizing off-target accumulation in the body. As a result, they play an important role in disease management and treatment. Recent DDS offer greater advantages when compared to conventional drug delivery systems due to their enhanced performance, automation, precision, and efficacy. They are made of nanomaterials or miniaturized devices with multifunctional components that are biocompatible, biodegradable, and have high viscoelasticity with an extended circulating half-life. This review, therefore, provides a comprehensive insight into the history and technological advancement of drug delivery systems. It updates the most recent drug delivery systems, their therapeutic applications, challenges associated with their use, and future directions for improved performance and use.

4.
Sci Rep ; 13(1): 6972, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117213

RESUMO

SARS-CoV-2 infection has led to several million deaths worldwide and ravaged the economies of many countries. Hence, developing therapeutics against SARS-CoV-2 remains a core priority in the fight against COVID-19. Most of the drugs that have received emergency use authorization for treating SARS-CoV-2 infection exhibit a number of limitations, including side effects and questionable efficacy. This challenge is further compounded by reinfection after vaccination and the high likelihood of mutations, as well as the emergence of viral escape mutants that render SARS-CoV-2 spike glycoprotein-targeting vaccines ineffective. Employing de novo drug synthesis or repurposing to discover broad-spectrum antivirals that target highly conserved pathways within the viral machinery is a focus of current research. In a recent drug repurposing study, masitinib, a clinically safe drug against the human coronavirus OC43 (HCoV-OC43), was identified as an antiviral agent with effective inhibitory activity against the SARS-CoV-2 3CLpro. Masitinib is currently under clinical trial in combination with isoquercetin in hospitalized patients (NCT04622865). Nevertheless, masitinib has kinase-related side effects; hence, the development of masitinib analogs with lower anti-tyrosine kinase activity becomes necessary. In this study, in an attempt to address this limitation, we executed a comprehensive virtual workflow in silico to discover drug-like compounds matching selected pharmacophore features in the SARS-CoV-2 3CLpro-bound state of masitinib. We identified a novel lead compound, "masitinibL", a drug-like analog of masitinib that demonstrated strong inhibitory properties against the SARS-CoV-2 3CLpro. In addition, masitinibL further displayed low selectivity for tyrosine kinases, which strongly suggests that masitinibL is a highly promising therapeutic that is preferable to masitinib.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/metabolismo , SARS-CoV-2/metabolismo , Tiazóis
5.
Infect Drug Resist ; 15: 3111-3133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747333

RESUMO

Background: Resistance to antifungal drugs for treating Candida infections remains a major concern globally despite the range of medications available. Most of these drugs target key proteins essential to the life cycle of the organism. An enzyme essential for fungal cell membrane integrity, lanosterol 14-α demethylase (CYP51), is encoded by the ERG11 gene in Candida species. This enzyme is the target of azole-based drugs. The organism has, however, devised molecular adaptations to evade the activity of these drugs. Materials and Methods: Classical methods were employed to characterize clinical isolates sampled from women and dogs of reproductive age. For fluconazole efficacy studies, CLSI guidelines on drug susceptibility testing were used. To understand the susceptibility pattern, various molecular and structural analytic approaches, including sequencing, in silico site-directed mutagenesis, and protein-ligand profiling, were applied to the ERG11 gene and CYP51 protein sequences. Several platforms, comprising Clustal Omega, Pymol plugin manager, Pymol molecular visualizer, Chimera-curated Dynameomics rotamer library, protein-ligand interaction profiler, Charmm36 force field, GROMACS, Geneious, and Mega7, were employed for this analysis. Results: The following Candida species distribution was obtained: 37.84% C. albicans, 8.12% C. glabrata, 10.81% C. krusei, 5.41% C. tropicalis, and 37.84% of other unidentified Candida species. Two codons in the nucleotide sequence of the wild-type (CTC and CCA) coding for LEU-370 and PRO-375, respectively, were mutated to L370S and P375H in the resistant strain. The mutation stabilized the protein at the expense of the heme moiety. We found that the susceptible isolate from dogs (Can-iso-029/dog) is closely related to the most resistant isolate from humans. Conclusion: Taken together, our results showed new mutations in the heme-binding pocket of caCYP51 that explain the resistance to fluconazole exhibited by the Candida isolates. So far, the L370S and P375H resistance-linked mutations have not been previously reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...