Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38695618

RESUMO

Emerging evidence in preclinical models demonstrates that antitumor immunity is not equivalent between males and females. However, more investigation in patients and across a wider range of cancer types is needed to fully understand sex as a variable in tumor immune responses. We investigated differences in T-cell responses between male and female patients with lung cancer by performing sex-based analysis of single cell transcriptomic datasets. We found that the transcript encoding CXC motif chemokine ligand 13 (CXCL13), which has recently been shown to correlate with T-cell tumor specificity, is expressed at greater levels in T cells isolated from female compared to male patients. Furthermore, increased expression of CXCL13 was associated with response to PD-1-targeting immunotherapy in female but not male patients. These findings suggest that there are sex-based differences in T-cell function required for response to anti-PD-1 therapy in lung cancer that may need to be considered during patient treatment decisions.

2.
J Phys Chem A ; 124(16): 3090-3100, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32227848

RESUMO

Threshold collision-induced dissociation of Th(OH)3+(H2O)n (n = 1-4) with xenon was performed using a guided ion beam tandem mass spectrometer. The primary dissociation pathway for all complexes is a loss of a single water molecule followed by the sequential loss of additional water molecules at higher collision energies. The data were analyzed using a statistical model after accounting for lifetime effects and reactant internal and kinetic energy distributions to obtain 0 K bond dissociation energies (BDEs). These were also converted using rigid rotor/harmonic oscillator approximations to yield thermodynamic values at room temperature. The 0 K BDEs of H2O ligands to Th(OH)3+ (IV) are experimentally determined for the first time as 106 ± 6, 89 ± 6, 76 ± 4, and 51 ± 4 kJ/mol for the first, second, third, and fourth water ligand added. These values agree reasonably well with values calculated at the B3LYP, B3PW91, and PBE0 levels of theory with aug-cc-pVQZ basis sets, whereas B3LYP-GD3BJ, MP2, and CCSD(T) single point energies with (without) counterpoise corrections systematically overestimate the bond energies by about 15 (20), 19 (25), and (18) kJ/mol, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...