Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 10(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235710

RESUMO

This paper presents a capacitive differential bridge structure with both AC and DC excitation and balancing capability for low cost electrode-solution interfacial capacitance biosensing applications. The proposed series RC balancing structure offers higher sensitivity, lower susceptibility to common-mode interferences, and drift control. To evaluate the bridge performance in practice, possible effects of initial bridge imbalance due to component mismatches are investigated considering the required resolution of the balancing networks, sensitivity, and linearity. This evaluation is also a guideline to designing the balancing networks, balancing algorithm and the proceeding readout interface circuitry. The proposed series RC bridge structure is implemented along with a custom single frequency real-time amplification/filtering readout board with real-time data acquisition and sine fitting. The main specifications for the implemented structure are 8-bit detection resolution if the total expected fractional capacitance change at the interface is roughly 1%. The characterization and measurement results show the effectiveness of the proposed structure in achieving the design target. The implemented structure successfully achieves distinct detection levels for tiny total capacitance change at the electrode-solution interface, utilizing Microcystin-(Leucine-Arginine) toxin dilutions as a proof of concept.


Assuntos
Técnicas Biossensoriais/métodos , Microcistinas/análise , Capacitância Elétrica , Eletrodos , Desenho de Equipamento
2.
Anal Bioanal Chem ; 412(24): 6009-6022, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32173790

RESUMO

Total internal reflection (TIR) optical spectroscopies have been widely used for decades as non-destructive and surface-sensitive measurements of thin films and interfaces. Under TIR conditions, an evanescent wave propagates into the sample layer within a region approximately 50 nm to 2 µm from the interface, which limits the spatial extent of the optical signal. The most common TIR optical spectroscopies are fluorescence (i.e., TIRF) and infrared spectroscopy (i.e., attenuated total reflection infrared). Despite the first report of TIR Raman spectroscopy appearing in 1973, this method has not received the same attention to date. While TIR Raman methods can provide chemical specific information, it has been outshined in many respects by surface-enhanced Raman spectroscopy (SERS). TIR Raman spectroscopy, however, is garnering more interest for analyzing the chemical and physical properties of thin polymer films, self-assembled monolayers (SAMs), multilayered systems, and adsorption at an interface. Herein, we discuss the early experimental and computational work that laid the foundation for recent developments in the use of TIR Raman techniques. Recent applications of TIR Raman spectroscopy as well as modern TIR Raman instruments capable of measuring monolayer-sensitive vibrational modes on smooth metallic surfaces are also discussed. The use of TIR Raman spectroscopy has been on a rise and will continue to push the limits for chemical specific interfacial and thin film measurements. Graphical abstract Total internal reflection (TIR) Raman spectroscopy can extract the chemical and physical information from thin films and adsorbates.

3.
Chem Commun (Camb) ; 55(43): 6102-6105, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31070202

RESUMO

Germanium nanocrystals (Ge NCs) have potential to be used in several optoelectronic applications such as photodetectors and light-emitting diodes. Here, we report a solid-state route to synthesizing Ge NCs through thermal disproportionation of a germania (GeOX) glass, which was synthesized by hydrolyzing a GeCl2·dioxane complex. The GeOX glass synthesized in this manner was found to have residual Cl content. The process of nanocrystal nucleation and growth was monitored using powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Compared to existing solid-state routes for synthesizing colloidal Ge NCs, this approach requires fewer steps and is amenable to scaling to large-scale reactions.

4.
Anal Chim Acta ; 1048: 123-131, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30598142

RESUMO

Experimental data for waveguide-coupled surface-plasmon-polariton (SPP) cones generated from dielectric waveguides is presented. The results demonstrate a simpler route to collect plasmon waveguide resonance (i.e., PWR) data. In the reverse-Kretschmann configuration (illumination from the sample side) and Kretschmann configuration (illumination from the prism side), all the waveguide modes are excited simultaneously with p- or s-polarized incident light, which permits rapid acquisition of PWR data without the need to scan the incident angle or wavelength, in the former configuration. The concentric SPP cone properties depend on the thickness and index of refraction of the waveguide. The angular intensity pattern of the cone is well-matched to simulation results in the reverse-Kretschmann configuration, and is found to be dependent on the polarization of the incident light and the polarization of the waveguide mode. In the Kretschmann geometry, all waveguide-coupled SPP cones are measured at incident angles that produce attenuated light reflectivity. In addition, the enhanced electric field produced under total internal reflection allows high signal-to-noise ratio multimodal spectroscopies (e.g., Raman scattering, luminescence) to measure the chemical content of the waveguide film, which traditionally is not measured with PWR.

6.
Analyst ; 143(2): 400-408, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28944395

RESUMO

Directional-surface-plasmon-coupled Raman scattering (directional RS) has the combined benefits of surface plasmon resonance and Raman spectroscopy, and provides the ability to measure adsorption and monolayer-sensitive chemical information. Directional RS is performed by optically coupling a 50 nm gold film to a Weierstrass prism in the Kretschmann configuration and scanning the angle of the incident laser under total internal reflection. The collected parameters on the prism side of the interface include a full surface-plasmon-polariton cone and the full Raman signal radiating from the cone as a function of incident angle. An instrument for performing directional RS and a quantitative study of the instrumental parameters are herein reported. To test the sensitivity and quantify the instrument parameters, self-assembled monolayers and 10 to 100 nm polymer films are studied. The signals are found to be well-modeled by two calculated angle-dependent parameters: three-dimensional finite-difference time-domain calculations of the electric field generated in the sample layer and projected to the far-field, and Fresnel calculations of the reflected light intensity. This is the first report of the quantitative study of the full surface-plasmon-polariton cone intensity, cone diameter, and directional Raman signal as a function of incident angle. We propose that directional RS is a viable alternative to surface plasmon resonance when added chemical information is beneficial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...