Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 23(5): 101114, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32438321

RESUMO

In the melanocortin pathway, melanocortin-4 receptor (MC4R) functions to control energy homeostasis. MC4R is expressed in a sub-population of Sim1 neurons (Sim1/MC4R neurons) and functions in hypothalamic paraventricular nuclei (PVN) to control food intake. Mapping sites of hypothalamic injury in obesity is essential to counteract the disease. In the PVN of male and female mice with diet-induced obesity (DIO) there is neuronal loss. However, the existing subpopulation of PVN Sim1/MC4R neurons is unchanged, but has a loss of mitochondria and MC4R protein. In mice of both sexes with DIO, dietary intervention to re-establish normal weight restores abundance of MC4R protein in Sim1/MC4R neurons and neurogenesis in the PVN. However, the number of non-Sim1/MC4R neurons in the PVN continues to remain decreased. Selective survival and recovery of Sim1/MC4R neurons after DIO suggests these neurons as preferential target to restore energy homeostasis and of therapy against obesity.

2.
Cell Death Discov ; 6: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123584

RESUMO

Genetic obesity increases in liver phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio, inducing endoplasmic reticulum (ER) stress without concomitant increase of ER chaperones. Here, it is found that exposing mice to a palm oil-based high fat (HF) diet induced obesity, loss of liver PE, and loss of the ER chaperone Grp78/BiP in pericentral hepatocytes. In Hepa1-6 cells treated with elevated concentration of palmitate to model lipid stress, Grp78/BiP mRNA was increased, indicating onset of stress-induced Unfolded Protein Response (UPR), but Grp78/BiP protein abundance was nevertheless decreased. Exposure to elevated palmitate also induced in hepatoma cells decreased membrane glycosylation, nuclear translocation of pro-apoptotic C/EBP-homologous-protein-10 (CHOP), expansion of ER-derived quality control compartment (ERQC), loss of mitochondrial membrane potential (MMP), and decreased oxidative phosphorylation. When PE was delivered to Hepa1-6 cells exposed to elevated palmitate, effects by elevated palmitate to decrease Grp78/BiP protein abundance and suppress membrane glycosylation were blunted. Delivery of PE to Hepa1-6 cells treated with elevated palmitate also blunted expansion of ERQC, decreased nuclear translocation of CHOP and lowered abundance of reactive oxygen species (ROS). Instead, delivery of the chemical chaperone 4-phenyl-butyrate (PBA) to Hepa1-6 cells treated with elevated palmitate, while increasing abundance of Grp78/BiP protein and restoring membrane glycosylation, also increased ERQC, expression and nuclear translocation of CHOP, non-mitochondrial oxygen consumption, and generation of ROS. Data indicate that delivery of PE to hepatoma cells under lipid stress recovers cell function by targeting the secretory pathway and by blunting pro-apoptotic branches of the UPR.

3.
J Neurochem ; 149(1): 73-97, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30615192

RESUMO

The hypothalamus is essential for regulation of energy homeostasis and metabolism. Feeding hypercaloric, high-fat (HF) diet induces hypothalamic arcuate nucleus injury and alters metabolism more severely in male than in female mice. The site(s) and extent of hypothalamic injury in male and female mice are not completely understood. In the paraventricular nucleus (PVN) of the hypothalamus, single-minded family basic helix-loop helix transcription factor 1 (Sim1) neurons are essential to control energy homeostasis. We tested the hypothesis that exposure to HF diet induces injury to Sim1 neurons in the PVN of male and female mice. Mice expressing membrane-bound enhanced green fluorescent protein (mEGFP) in Sim1 neurons (Sim1-Cre:Rosa-mEGFP mice) were generated to visualize the effects of exposure to HF diet on these neurons. Male and female Sim1-Cre:Rosa-mEGFP mice exposed to HF diet had increased weight, hyperleptinemia, and developed hepatosteatosis. In male and female mice exposed to HF diet, expression of mEGFP was reduced by > 40% in Sim1 neurons of the PVN, an effect paralleled by cell apoptosis and neuronal loss, but not by microgliosis. In the arcuate nucleus of the Sim1-Cre:Rosa-mEGFP male mice, there was decreased alpha-melanocyte-stimulating hormone in proopiomelanocortin neurons projecting to the PVN, with increased cell apoptosis, neuronal loss, and microgliosis. These defects were undetectable in the arcuate nucleus of female mice exposed to the HF diet. Thus, injury to Sim1 neurons of the PVN is a shared feature of exposure to HF diet in mice of both sexes, while injury to proopiomelanocortin neurons in arcuate nucleus is specific to male mice. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Neurônios/patologia , Núcleo Hipotalâmico Paraventricular/patologia , Proteínas Repressoras/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/patologia , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo
4.
Epigenetics ; 13(1): 1-7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29271283

RESUMO

Previous work in Saccharomyces cerevisiae identified three residues located in close proximity to each other on the side of the nucleosome whose integrity is required for proper association of the Spt16 component of the FACT complex across transcribed genes. In an effort to gain further insights into the parameters that control Spt16 interactions with genes in vivo, we tested the effects of additional histone mutants on Spt16 occupancy across two constitutively transcribed genes. These studies revealed that mutations in several charged residues in the vicinity of the three residues originally identified as important for Spt16-gene interactions also significantly perturb normal association of Spt16 across genes. Based on these and our previous findings, we propose that the charge landscape across the region encompassed by these residues, which we refer to as the Influences Spt16-Gene Interactions or ISGI region, is an important contributor to proper Spt16-gene interactions in vivo.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Alanina/genética , Substituição de Aminoácidos , Imunoprecipitação da Cromatina , Regulação Fúngica da Expressão Gênica , Histonas/química , Histonas/genética , Mutação , Nucleossomos/química , Nucleossomos/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fatores de Elongação da Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...