Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1285725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023233

RESUMO

Background: Adaptive MRI-guided radiotherapy (MRIgRT) requires accurate and efficient segmentation of organs and targets on MRI scans. Manual segmentation is time-consuming and variable, while deformable image registration (DIR)-based contour propagation may not account for large anatomical changes. Therefore, we developed and evaluated an automatic segmentation method using the nnU-net framework. Methods: The network was trained on 38 patients (76 scans) with localized prostate cancer and tested on 30 patients (60 scans) with localized prostate, metastatic prostate, or bladder cancer treated at a 1.5 T MRI-linac at our institution. The performance of the network was compared with the current clinical workflow based on DIR. The segmentation accuracy was evaluated using the Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) metrics. Results: The trained network successfully segmented all 600 structures in the test set. High similarity was obtained for most structures, with 90% of the contours having a DSC above 0.9 and 86% having an MSD below 1 mm. The largest discrepancies were found in the sigmoid and colon structures. Stratified analysis on cancer type showed that the best performance was seen in the same type of patients that the model was trained on (localized prostate). Especially in patients with bladder cancer, the performance was lower for the bladder and the surrounding organs. A complete automatic delineation workflow took approximately 1 minute. Compared with contour transfer based on the clinically used DIR algorithm, the nnU-net performed statistically better across all organs, with the most significant gain in using the nnU-net seen for organs subject to more considerable volumetric changes due to variation in the filling of the rectum, bladder, bowel, and sigmoid. Conclusion: We successfully trained and tested a network for automatically segmenting organs and targets for MRIgRT in the male pelvis region. Good test results were seen for the trained nnU-net, with test results outperforming the current clinical practice using DIR-based contour propagation at the 1.5 T MRI-linac. The trained network is sufficiently fast and accurate for clinical use in an online setting for MRIgRT. The model is provided as open-source.

2.
Radiother Oncol ; 167: 165-171, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923034

RESUMO

BACKGROUND AND PURPOSE: With daily, MR-guided online adapted radiotherapy (MRgART) it may be possible to reduce the PTV in pelvic RT. This study investigated the potential reduction in normal tissue complication probability (NTCP) of MRgART compared to standard radiotherapy for high-risk prostate cancer. MATERIALS AND METHODS: Twenty patients treated with 78 Gy to the prostate and 56 Gy to elective pelvic lymph nodes were included. VMAT plans were generated with standard clinical PTV margins. Additionally to the planning MR, patients had three MRI scans during treatment to simulate an MRgART. A reference plan with PTV margins determined for MRgART was created per patient and adapted to each of the following MRs. Adapted plans were warped to the planning MR for dose accumulation. The standard plan was rigidly registered to each adaptation MR before it was warped to the planning MR for dose accumulation. Dosimetric impact was compared by DVH analysis and potential clinical effects were assessed by NTCP modeling. RESULTS: MRgART yielded statistically significant lower doses for the bladder wall, rectum and peritoneal cavity, compared to the standard RT, which translated into reduced median risks of urine incontinence (ΔNTCP 2.8%), urine voiding pain (ΔNTCP 2.8%) and acute gastrointestinal toxicity (ΔNTCP 17.4%). Mean population accumulated doses were as good or better for all investigated OAR when planned for MRgART as standard RT. CONCLUSION: Online adapted radiotherapy may reduce the dose to organs at risk in high-risk prostate cancer patients, due to reduced PTV margins. This potentially translates to significant reductions in the risks of acute and late adverse effects.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Masculino , Órgãos em Risco , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos
3.
Front Oncol ; 11: 637591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718230

RESUMO

Radiotherapy has an important role in the curative and palliative treatment settings for bladder cancer. As a target for radiotherapy the bladder presents a number of technical challenges. These include poor tumor visualization and the variability in bladder size and position both between and during treatment delivery. Evidence favors the use of magnetic resonance imaging (MRI) as an important means of tumor visualization and local staging. The availability of hybrid systems incorporating both MRI scanning capabilities with the linear accelerator (MR-Linac) offers opportunity for in-room and real-time MRI scanning with ability of plan adaption at each fraction while the patient is on the treatment couch. This has a number of potential advantages for bladder cancer patients. In this article, we examine the technical challenges of bladder radiotherapy and explore how magnetic resonance (MR) guided radiotherapy (MRgRT) could be leveraged with the aim of improving bladder cancer patient outcomes. However, before routine clinical implementation robust evidence base to establish whether MRgRT translates into improved patient outcomes should be ascertained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...