Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
2.
Food Res Int ; 186: 114318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729711

RESUMO

The microbiome of surfaces along the beef processing chain represents a critical nexus where microbial ecosystems play a pivotal role in meat quality and safety of end products. This study offers a comprehensive analysis of the microbiome along beef processing using whole metagenomics with a particular focus on antimicrobial resistance and virulence-associated genes distribution. Our findings highlighted that microbial communities change dynamically in the different steps along beef processing chain, influenced by the specific conditions of each micro-environment. Brochothrix thermosphacta, Carnobacterium maltaromaticum, Pseudomonas fragi, Psychrobacter cryohalolentis and Psychrobacter immobilis were identified as the key species that characterize beef processing environments. Carcass samples and slaughterhouse surfaces exhibited a high abundance of antibiotic resistance genes (ARGs), mainly belonging to aminoglycosides, ß-lactams, amphenicols, sulfonamides and tetracyclines antibiotic classes, also localized on mobile elements, suggesting the possibility to be transmitted to human pathogens. We also evaluated how the initial microbial contamination of raw beef changes in response to storage conditions, showing different species prevailing according to the type of packaging employed. We identified several genes leading to the production of spoilage-associated compounds, and highlighted the different genomic potential selected by the storage conditions. Our results suggested that surfaces in beef processing environments represent a hotspot for beef contamination and evidenced that mapping the resident microbiome in these environments may help in reducing meat microbial contamination, increasing shelf-life, and finally contributing to food waste restraint.


Assuntos
Microbiologia de Alimentos , Microbiota , Carne Vermelha , Microbiota/genética , Carne Vermelha/microbiologia , Animais , Bovinos , Manipulação de Alimentos/métodos , Bactérias/genética , Bactérias/classificação , Metagenômica/métodos , Farmacorresistência Bacteriana/genética , Matadouros , Antibacterianos/farmacologia , Contaminação de Alimentos/análise , Resistência Microbiana a Medicamentos/genética , Embalagem de Alimentos
3.
Nutrients ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732578

RESUMO

This study examined the effects of orange juice (OJ) supplemented with vitamin D3 (2000 IU) and probiotics (Lacticaseibacillus casei Shirota and Lacticaseibacillus rhamnosus GG, 108 cfu/mL) on cardiometabolic risk factors in overweight and obese adults following a Westernized-type diet. Fifty-three high-risk individuals were randomly assigned to one of two groups. Over 8 weeks, one group consumed a vitamin D3 and probiotic-enriched OJ and the other regular OJ (control). Diets remained unchanged and were documented through food diaries. Measures of metabolic and inflammatory markers and blood pressure were measured at the start and end of the study. Post-intervention, the enriched OJ group showed the following significant metabolic improvements (without changes in triglycerides, inflammation, or central blood pressure): reduced fasting insulin, peripheral blood pressure, body weight (-1.4 kg 95% CI: -2.4, -0.4), energy (-270 kcal 95% CI: -553.2, -13.7), macronutrient (dietary fat -238 kcal 95% CI: -11.9, -1.0; carbohydrates -155 kcal 95% CI: -282.4, -27.3; sugars -16.1 g 95% CI: -11.9, -1.0) intake, and better lipid profiles (total cholesterol -10.3 mg/dL 95% CI: -21.4, 0.9; LDL-C -7 mg/dL 95% CI: -13.5, -0.5). The enriched OJ led to weight loss, less energy/macronutrient consumption, improved lipid profiles, and increased insulin sensitivity after 8 weeks in those following a Westernized diet, thus indicating potential benefits for cardiometabolic risk. This study was a part of FunJuice-T2EDK-01922, which was funded by the EU Regional Development Fund and Greek National Resources.


Assuntos
Pressão Sanguínea , Fatores de Risco Cardiometabólico , Colecalciferol , Citrus sinensis , Dieta Ocidental , Sucos de Frutas e Vegetais , Resistência à Insulina , Lipídeos , Probióticos , Humanos , Masculino , Probióticos/administração & dosagem , Feminino , Pessoa de Meia-Idade , Pressão Sanguínea/efeitos dos fármacos , Colecalciferol/administração & dosagem , Colecalciferol/farmacologia , Lipídeos/sangue , Obesidade/sangue , Adulto , Suplementos Nutricionais , Sobrepeso , Peso Corporal , Redução de Peso , Lacticaseibacillus rhamnosus
4.
Foods ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790833

RESUMO

Acidic stress in beef cattle slaughtering abattoirs can induce the acid adaptation response of in-plant contaminated Salmonella. This may further lead to multiple resistance responses threatening public health. Therefore, the acid, heat, osmotic and antibiotic resistances of Salmonella typhimurium (ATCC14028) were evaluated after a 90 min adaption in a pH = 5.4 "mild acid" Luria-Bertani medium. Differences in such resistances were also determined between the ∆phoP mutant and wild-type Salmonella strains to confirm the contribution of the PhoP/PhoQ system. The transcriptomic differences between the acid-adapted and ∆phoP strain were compared to explore the role of the PhoP/Q two-component system in regulating multi-stress resistance. Acid adaptation was found to increase the viability of Salmonella to lethal acid, heat and hyperosmotic treatments. In particular, acid adaptation significantly increased the resistance of Salmonella typhimurium to Polymyxin B, and such resistance can last for 21 days when the adapted strain was stored in meat extract medium at 4 °C. Transcriptomics analysis revealed 178 up-regulated and 274 down-regulated genes in the ∆phoP strain. The Salmonella infection, cationic antimicrobial peptide (CAMP) resistance, quorum sensing and two-component system pathways were down-regulated, while the bacterial tricarboxylic acid cycle pathways were up-regulated. Transcriptomics and RT-qPCR analyses revealed that the deletion of the phoP gene resulted in the down-regulation of the expression of genes related to lipid A modification and efflux pumps. These changes in the gene expression result in the change in net negative charge and the mobility of the cell membrane, resulting in enhanced CAMP resistance. The confirmation of multiple stress resistance under acid adaptation and the transcriptomic study in the current study may provide valuable information for the control of multiple stress resistance and meat safety.

5.
J Food Prot ; : 100274, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583716

RESUMO

Monitoring food quality throughout the supply chain in a rapid and cost-effective way allows on-time decision making, reducing food waste and increasing sustainability. In that framework, a portable multispectral imaging sensor was used, while the acquired data in combination with neural networks were evaluated for the prediction of fish fillets quality. Images of fish fillets were acquired using samples from both aquaculture and retail stores of different packaging and fish parts. The obtained products (air or vacuum packaged) were further stored at different temperature conditions. In parallel to image acquisition, microbial quality was estimated as well. The data were used for the training of predictive neural models that aimed to estimate total aerobic counts (TAC). The models were developed and validated using data from aquaculture and were externally validated with samples purchased from the retail stores. The set up allowed the evaluation of models for the different parts of the fish and conditions. The performance for the validation set was similar for flesh (RMSE: 0.402-0.547) and skin side (RMSE: 0.500-0.533) of the fish fillets. The performance for the different packaging conditions was also similar, however, in the external validation, the vacuum-packaged samples showed better performance in terms of RMSE compared to the air-packaged ones. Models irrespective of packaging condition are very important for cases where the products' history is unknown although the prediction capability was not as high as in the models per packaging condition individually. The models tested with unknown samples (i.e., from retail stores) showed poorer performance (RMSE: 1.061-1.414) compared to the models validated with data partitioning (RMSE: 0.402-0.547). Multispectral imaging sensor appeared to be efficient for the rapid assessment of the microbiological quality of fish fillets for all the different cases evaluated.

6.
Food Chem ; 440: 138184, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100963

RESUMO

Rapid assessment of microbiological quality (i.e., Total Aerobic Counts, TAC) and authentication (i.e., fresh vs frozen/thawed) of meat was investigated using spectroscopic-based methods. Data were collected throughout storage experiments from different conditions. In total 526 spectra (Fourier transform infrared, FTIR) and 534 multispectral images (MSI) were acquired. Partial Least Squares (PLS) was applied to select/transform the variables. In the case of FTIR data 30 % of the initial features were used, while for MSI-based models all features were employed. Subsequently, Support Vector Machines (SVM) regression/classification models were developed and evaluated. The performance of the models was evaluated based on the external validation set. In both cases MSI-based models (Root Mean Square Error, RMSE: 0.48-1.08, Accuracy: 91-97 %) were slightly better compared to FTIR (RMSE: 0.83-1.31, Accuracy: 88-94 %). The most informative features of FTIR for the case of quality were mainly in 900-1700 cm-1, while for fraud the features were more dispersed.


Assuntos
Fraude , Carne , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Carne/microbiologia , Análise dos Mínimos Quadrados
7.
Meat Sci ; 208: 109378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37952270

RESUMO

Investigation on the distribution and biological characteristics of Shiga-toxin producing Escherichia coli (STEC) during beef processing is essential for in-plant critical control points and food safety risk assessment. Serogroups and subtypes of stx genes of STEC strains isolated from beef processing lines were first investigated. Identification to cross-contamination among different sampling sites was further conducted by combining multilocus sequence typing (MLST) with the previous distribution and characterization data. The PCR-positive rate for STEC in 435 samples from two slaughter plants in China was 14.3% and the isolation rate for the 62 PCR positive and the entire set of 435 samples were 26% and 3.68% respectively. The existence of serotype O157:H7 (33%) and serogroups O121 (42%) and O26 (21%) as well as the high detection rate of high pathogenic gene stx2a (68%) in these serogroups indicated potential risk to the safety of beef. Traceability analysis showed that hide plays a critical role in cross-contamination between feces, lairage pens and post-washing carcasses from a molecular perspective. Intervening measures revolves around de-hiding should be involved in the in-plant safety control policy according to the tracing analysis.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Bovinos , Animais , Escherichia coli Shiga Toxigênica/genética , Proteínas de Escherichia coli/genética , Tipagem de Sequências Multilocus , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Sorogrupo , Fezes , Infecções por Escherichia coli/veterinária
8.
Metabolites ; 13(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37512498

RESUMO

This study aimed to determine the glycemic index (GI) of a commercial mixed fruit juice (apple, orange, grape, and pomegranate; FJ) fortified with vitamin D3 or n-3 polyunsaturated fatty acids (PUFA) or probiotics, and their combination, and their effects on glycemic responses and salivary insulin concentrations. In a randomized controlled, double-blind, crossover study, 11 healthy participants (25 ± 2 years; five women; body mass index = 23 ± 1 kg/m2) were randomly assigned to receive five types of FJs [vitD (with vitamin D3); n-3 (with n-3 PUFA); probiotics (with Lacticaseibacillus casei Shirota and Lacticaseibacillus rhamnosus GG); vitD-n-3-probiotics FJ (combination of vitD3-n-3-probiotics), control (regular FJ)], all containing 50 g available carbohydrate, and glucose as reference drink. All FJs provided low GI values (control: 54; vitD3: 52; n-3: 51; probiotics: 50; and vitD-n-3-probiotics combination: 52, on glucose scale). Compared to the FJ control, the enriched FJs produced different postprandial glycemic and insulinemic responses and affected satiety scores. All FJ types, regardless of the added biofunctional ingredients, attenuated postprandial glycemic responses, which may offer advantages to glycemic control.

9.
Int J Food Microbiol ; 405: 110334, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37517119

RESUMO

The advent of high-throughput sequencing technologies in recent years has revealed the unexpected presence of genus Photobacterium within the chicken meat spoilage ecosystem. This study was undertaken to decipher the occurrence, the growth patterns and the genotypic biodiversity of Photobacterium phosphoreum on chicken breast fillets stored aerobically at 4 °C through conventional microbiological methods and molecular techniques. Samples were periodically cultured on marine broth agar (MA; supplemented with meat extract and vancomycin) for the enumeration of presumptive bioluminescent Photobacterium spp. In total, 90 bioluminescent bacteria were recovered from the initial (time of first appearance), middle and end stages of storage. Concomitantly, 95 total psychrotrophic/psychrophilic bacteria were isolated from the same medium to assess the presence and diversity of non-luminous photobacteria. Genetic diversity between bioluminescent isolates was assessed with two PCR-based DNA fingerprinting methods, i.e. RAPD and rep-PCR. Moreover, the characterization of selected bacterial isolates at the genus and/or species level was performed by sequencing of the 16S rRNA and/or gyrB gene. Bioluminescent bacteria were scarcely encountered in fresh samples at population levels of ca. 2.0 log CFU/g, whilst total psychrotrophic/psychrophilic bacteria were found at levels of ca. 4.4 log CFU/g. As time proceeded and close to shelf-life end, bioluminescent bacteria were encountered at higher populations, and were found at levels of 5.3 and 7.0 log CFU/g in samples from the second and third batch, respectively. In the first batch their presence was occasional and at levels up to 3.9 log CFU/g. Accordingly, total psychrotrophic/psychrophilic bacteria exceeded 8.4 log CFU/g at the end of storage, suggesting the possible underestimation of bioluminescent populations following the specific cultivation conditions. Sequence analysis assigned bioluminescent isolates to Photobacterium phosphoreum, while genetic fingerprinting revealed high intra-species variability. Respectively, total psychrotrophs/psychrophiles were assigned to genera Pseudomonas, Shewanella, Psychrobacter, Acinetobacter, Vibrio and Photobacterium. Non-luminous photobacteria were not identified within the psychrotrophs/psychrophiles. Results of the present study reveal the intra- and inter-batch variability on the occurrence and growth responses of P. phosphoreum and highlight its potential role in the chicken meat spoilage consortium.


Assuntos
Photobacterium , Vibrio , Animais , Galinhas/genética , Microbiologia de Alimentos , Carne/microbiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , RNA Ribossômico 16S/genética , Vibrio/genética
10.
Sensors (Basel) ; 23(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37177437

RESUMO

Spectroscopic sensor imaging of food samples meta-processed by deep machine learning models can be used to assess the quality of the sample. This article presents an architecture for estimating microbial populations in meat samples using multispectral imaging and deep convolutional neural networks. The deep learning models operate on embedded platforms and not offline on a separate computer or a cloud server. Different storage conditions of the meat samples were used, and various deep learning models and embedded platforms were evaluated. In addition, the hardware boards were evaluated in terms of latency, throughput, efficiency and value on different data pre-processing and imaging-type setups. The experimental results showed the advantage of the XavierNX platform in terms of latency and throughput and the advantage of Nano and RP4 in terms of efficiency and value, respectively.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Carne/microbiologia , Diagnóstico por Imagem , Computadores
11.
Pathogens ; 12(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111459

RESUMO

Microbial interactions play an important role in initial cell adhesion and the endurance of biofilm toward disinfectant stresses. The present study aimed to evaluate the effect of microbial interactions on biofilm formation and the disinfecting activity of an innovative photocatalytic surfactant based on TiO2 nanoparticles. Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, Leuconostoc spp., Latilactobacillus sakei, Serratia liquefaciens, Serratia proteomaculans, Citrobacter freundii, Hafnia alvei, Proteus vulgaris, Pseudomonas fragi, and Brochothrix thermosphacta left to form mono- or dual-species biofilms on stainless steel (SS) coupons. The effectiveness of the photocatalytic disinfectant after 2 h of exposure under UV light on biofilm decontamination was evaluated. The effect of one parameter i.e., exposure to UV or disinfectant, was also determined. According to the obtained results, the microbial load of a mature biofilm depended on the different species or dual species that had adhered to the surface, while the presence of other species could affect the biofilm population of a specific microbe (p < 0.05). The disinfectant strengthened the antimicrobial activity of UV, as, in most cases, the remaining biofilm population was below the detection limit of the method. Moreover, the presence of more than one species affected the resistance of the biofilm cells to UV and the disinfectant (p < 0.05). In conclusion, this study confirms that microbial interactions affected biofilm formation and decontamination, and it demonstrates the effectiveness of the surfactant with the photocatalytic TiO2 agent, suggesting that it could be an alternative agent with which to disinfect contaminated surfaces.

12.
Meat Sci ; 200: 109168, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963260

RESUMO

The objective of this study was to assess the potential to predict the microbial beef spoilage indicators by Raman and Fourier transform infrared (FT-IR) spectroscopies. Vacuum skin packaged (VSP) beef steaks were stored at 0 °C, 4 °C, 8 °C and under a dynamic temperature condition (0 °C âˆ¼ 4 °C âˆ¼ 8 °C, for 36 d). Total viable count (TVC) and total volatile basic nitrogen (TVB-N) were obtained during the storage period along with spectroscopic data. The Raman and FTIR spectra were baseline corrected, pre-processed using Savitzky-Golay smoothing and normalized. Subsequently partial least squares regression (PLSR) models of TVC and TVB-N were developed and evaluated. The root mean squared error (RMSE) ranged from 0.81 to1.59 (log CFU/g or mg/100 g) and the determination coefficient (R2) from 0.54 to 0.75. The performance of PLSR model based on data fusion (combination of Raman and FT-IR data) is better than that based on Raman spectra and similar to that of FT-IR. Overall, Raman spectroscopy, FT-IR spectroscopy, and a combination of both exhibited a potential for the prediction of the beef spoilage.


Assuntos
Carne Vermelha , Animais , Bovinos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise dos Mínimos Quadrados , Análise Espectral Raman/métodos
13.
Food Res Int ; 164: 112312, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737906

RESUMO

The aim of the present work was to study the microbiota profile of gilthead seabream (Sparus aurata) fillets stored either aerobically or under Modified Atmosphere Packaging (MAP) conditions at 0, 4, 8 and 12 °C, via 16S rRNA metabarcoding sequencing. Throughout storage, sensory assessment was also applied to estimate fillets' end of shelf-life. Results indicated that storage conditions strongly influenced the shelf-life of the fillets, since the sensorial attributes of air-stored samples deteriorated earlier than that of MAP-stored fillets, while higher temperatures also contributed to a more rapid products' end of shelf-life. Metataxonomic analysis indicated that Pseudomonas was by far the dominant genus at the end of fillet's shelf-life, in the vast majority of treatments, even though a sporadic but noteworthy presence of other genera (e.g, Shewanella, Carnobacterium, Brochothrix etc.) at the middle stages of MAP-stored fillets is also worth mentioning. On the other hand, a completely different profile as well as a more abundant bacterial diversity was observed at the end of shelf-life of MAP-stored fillets at 12 °C, in which Serratia was the most dominant bacterium, followed by Kluyvera, Hafnia, Rahnella and Raoultella, while Pseudomonas was detected in traces. The findings of the present work are very important, providing useful information about the spoilage status of gilthead seabream fillets during several storage conditions, triggering in parallel the need for further studies to enrich the current knowledge and help stakeholders develop innovative strategies that delay the growth of key spoiler players and consequently, retard spoilage course.


Assuntos
Microbiota , Dourada , Animais , Dourada/microbiologia , RNA Ribossômico 16S/genética , Bactérias , Microbiota/genética
14.
Food Microbiol ; 111: 104190, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681396

RESUMO

Temperature is a major determinant of Listeria (L.) monocytogenes adherence and biofilm formation on abiotic surfaces. However, its role on gene regulation of L. monocytogenes mature biofilms has not been investigated. In the present study, we aimed to evaluate the impact of temperature up- and down-shift on L. monocytogenes biofilms gene transcription. L. monocytogenes strain EGD-e biofilms were first developed on stainless steel surfaces in Brain Heart Infusion broth at 20 °C for 48 h. Then, nutrient broth was renewed, and mature biofilms were exposed to 10 °C, 20 °C or 37 °C for 24 h. Biofilm cells were harvested and RNA levels of plcA, prfA, hly, mpl, plcB, sigB, bapL, fbpA, fbpB, lmo2178, lmo0880, lmo0160, lmo1115, lmo 2089, lmo2576, lmo0159 and lmo0627 were evaluated by quantitative RT-PCR. The results revealed an over-expression of all genes tested in biofilm cells compared to planktonic cells. When biofilms were further allowed to proliferate at 20 °C for 24 h, the transcription levels of key virulence, stress response and putative binding proteins genes plcA, sigB, fbpA, fbpB, lmo1115, lmo0880 and lmo2089 decreased. A temperature-dependent transcription for sigB, plcA, hly, and lmo2089 genes was observed after biofilm proliferation at 10 °C or 37 °C. Our findings suggest that temperature differentially affects gene regulation of L. monocytogenes mature biofilms, thus modulating attributes such as virulence, stress response and pathogenesis.


Assuntos
Listeria monocytogenes , Listeria , Listeria monocytogenes/fisiologia , Virulência/genética , Temperatura , Biofilmes , Listeria/genética
15.
Microorganisms ; 10(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422321

RESUMO

Fourier-transform infrared spectroscopy (FT-IR), multispectral imaging (MSI), and an electronic nose (E-nose) were implemented individually and in combination in an attempt to investigate and, hence, identify the complexity of the phenomenon of spoilage in poultry. For this purpose, marinated chicken souvlaki samples were subjected to storage experiments (isothermal conditions: 0, 5, and 10 °C; dynamic temperature conditions: 12 h at 0 °C, 8 h at 5 °C, and 4 h at 10 °C) under aerobic conditions. At pre-determined intervals, samples were microbiologically analyzed for the enumeration of total viable counts (TVCs) and Pseudomonas spp., while, in parallel, FT-IR, MSI, and E-nose measurements were acquired. Quantitative models of partial least squares-Regression (PLS-R) and support vector machine-regression (SVM-R) (separately for each sensor and in combination) were developed and validated for the estimation of TVCs in marinated chicken souvlaki. Furthermore, classification models of linear discriminant analysis (LDA), linear support vector machine (LSVM), and cubic support vector machines (CSVM) that classified samples into two quality classes (non-spoiled or spoiled) were optimized and evaluated. The model performance was assessed with data obtained by six different analysts and three different batches of marinated souvlaki. Concerning the estimation of the TVCs via the PLS-R model, the most efficient prediction was obtained with spectral data from MSI (root mean squared error-RMSE: 0.998 log CFU/g), as well as with combined data from FT-IR/MSI (RMSE: 0.983 log CFU/g). From the developed SVM-R models, the predictions derived from MSI and FT-IR/MSI data accurately estimated the TVCs with RMSE values of 0.973 and 0.999 log CFU/g, respectively. For the two-class models, the combined data from the FT-IR/MSI instruments analyzed with the CSVM algorithm provided an overall accuracy of 87.5%, followed by the MSI spectral data analyzed with LSVM, with an overall accuracy of 80%. The abovementioned findings highlighted the efficacy of these non-invasive rapid methods when used individually and in combination for the assessment of spoilage in marinated chicken products regardless of the impact of the analyst, season, or batch.

16.
Microorganisms ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144472

RESUMO

In the present work, the profiles of bacterial communities of whole and filleted European sea bass (Dicentrarchus labrax), during several storage temperatures (0, 4, 8 and 12 °C) under aerobic and Modified Atmosphere Packaging (MAP) conditions, were examined via the 16S rRNA High-Throughput Sequencing (HTS) approach. Sensorial attributes were also assessed to determine products' shelf-life. Results indicated that shelf-life was strongly dependent on handling, as well as on temperature and atmosphere conditions. HTS revealed the undisputed dominance of Pseudomonas from the very beginning and throughout storage period in the majority of treatments. However, a slightly different microbiota profile was recorded in MAP-stored fillets at the middle stages of storage, which mainly referred to the sporadic appearance of some bacteria (e.g., Carnobacterium, Shewanella, etc.) that followed the dominance of Pseudomonas. It is noticeable that a major difference was observed at the end of shelf-life of MAP-stored fillets at 12 °C, where the dominant microbiota was constituted by the genus Serratia, while the relative abundance of Pseudomonas and Brochothrix was more limited. Furthermore, at the same temperature under aerobic storage of both whole and filleted fish, Pseudomonas almost co-existed with Acinetobacter, while the presence of both Erwinia and Serratia in whole fish was noteworthy. Overall, the present study provides useful information regarding the storage fate and spoilage status of whole and filleted European sea bass, suggesting that different handling and storage conditions influence the shelf-life of sea bass by favoring or delaying the dominance of Specific Spoilage Organisms (SSOs), affecting in parallel to some extent the formation of their consortium that is responsible for products' sensorial deterioration. Such findings enrich the current knowledge and should be used as a benchmark to develop specific strategies aiming to delay spoilage and thus increase the products' added value.

17.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146366

RESUMO

The expansion of the seaweed aquaculture sector along with the rapid deterioration of these products escalates the importance of implementing rapid, real-time techniques for their quality assessment. Seaweed samples originating from Scotland and Ireland were stored under various temperature conditions for specific time intervals. Microbiological analysis was performed throughout storage to assess the total viable counts (TVC), while in parallel FT-IR spectroscopy, multispectral imaging (MSI) and electronic nose (e-nose) analyses were conducted. Machine learning models (partial least square regression (PLS-R)) were developed to assess any correlations between sensor and microbiological data. Microbial counts ranged from 1.8 to 9.5 log CFU/g, while the microbial growth rate was affected by origin, harvest year and storage temperature. The models developed using FT-IR data indicated a good prediction performance on the external test dataset. The model developed by combining data from both origins resulted in satisfactory prediction performance, exhibiting enhanced robustness from being origin unaware towards microbiological population prediction. The results of the model developed with the MSI data indicated a relatively good prediction performance on the external test dataset in spite of the high RMSE values, whereas while using e-nose data from both MI and SAMS, a poor prediction performance of the model was reported.


Assuntos
Microbiologia de Alimentos , Alga Marinha , Contagem de Colônia Microbiana , Humanos , Análise dos Mínimos Quadrados , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
Gels ; 8(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135251

RESUMO

This study presents, the development of a green method to produce rich in thymol natural zeolite (TO@NZ) nanostructures. This material was used to prepare sodium-alginate/glycerol/xTO@NZ (ALG/G/TO@NZ) nanocomposite active films for the packaging of soft cheese to extend its shelf-life. Differential scanning calorimetry (DSC), X-ray analysis (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) instruments were used for the characterization of such nanostructures and films, to identify the thymol adsorbed amount, to investigate the thermal behaviour, and to confirm the dispersion of nanostructure powder into the polymer matrix. Water vapor transmission rate, oxygen permeation analyzer, tensile measurements, antioxidant measurements, and antimicrobial measurements were used to estimate the film's water and oxygen barrier, mechanical properties, nanostructure's nanoreinforcement activity, antioxidant and antimicrobial activity. The findings from the study revealed that ALG/G/TO@NZ nanocomposite film could be used as an active packaging film for foods with enhanced, mechanical properties, oxygen and water barrier, antioxidant and antimicrobial activity, and it is capable of extending food shelf-life.

19.
Foods ; 11(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36010385

RESUMO

The rapid assessment of the microbiological quality of highly perishable food commodities is of great importance. Spectroscopic data coupled with machine learning methods have been investigated intensively in recent years, because of their rapid, non-destructive, eco-friendly qualities and their potential to be used on-, in- or at-line. In the present study, the microbiological quality of chicken burgers was evaluated using Fourier transform infrared (FTIR) spectroscopy and multispectral imaging (MSI) in tandem with machine learning algorithms. Six independent batches were purchased from a food industry and stored at 0, 4, and 8 °C. At regular time intervals (specifically every 24 h), duplicate samples were subjected to microbiological analysis, FTIR measurements, and MSI sampling. The samples (n = 274) acquired during the data collection were classified into three microbiological quality groups: "satisfactory": 4−7 log CFU/g, "acceptable": 7−8 log CFU/g, and "unacceptable": >8 logCFU/g. Subsequently, classification models were trained and tested (external validation) with several machine learning approaches, namely partial least squares discriminant analysis (PLSDA), support vector machine (SVM), random forest (RF), logistic regression (LR), and ordinal logistic regression (OLR). Accuracy scores were attained for the external validation, exhibiting FTIR data values in the range of 79.41−89.71%, and, for the MSI data, in the range of 74.63−85.07%. The performance of the models showed merit in terms of the microbiological quality assessment of chicken burgers.

20.
Foods ; 11(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35954122

RESUMO

The potential of Fourier transform infrared (FT-IR) spectroscopy, multispectral imaging (MSI), and electronic nose (E-nose) was explored in order to determine the microbiological quality of gilthead sea bream (Sparus aurata) fillets. Fish fillets were maintained at four temperatures (0, 4, 8, and 12 °C) under aerobic conditions and modified atmosphere packaging (MAP) (33% CO2, 19% O2, 48% N2) for up to 330 and 773 h, respectively, for the determination of the population of total viable counts (TVC). In parallel, spectral data were acquired by means of FT-IR and MSI techniques, whereas the volatile profile of the samples was monitored using an E-nose. Thereafter, the collected data were correlated to microbiological counts to estimate the TVC during fish fillet storage. The obtained results demonstrated that the partial least squares regression (PLS-R) models developed on FT-IR data provided satisfactory performance in the estimation of TVC for both aerobic and MAP conditions, with coefficients of determination (R2) for calibration of 0.98 and 0.94, and root mean squared error of calibration (RMSEC) values of 0.43 and 0.87 log CFU/g, respectively. However, the performance of the PLS-R models developed on MSI data was less accurate with R2 values of 0.79 and 0.77, and RMSEC values of 0.78 and 0.72 for aerobic and MAP storage, respectively. Finally, the least satisfactory performance was observed for the E-nose with the lowest R2 (0.34 and 0.17) and the highest RMSEC (1.77 and 1.43 log CFU/g) values for aerobic and MAP conditions, respectively. The results of this work confirm the effectiveness of FT-IR spectroscopy for the rapid evaluation of the microbiological quality of gilthead sea bream fillets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...