Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(57): e202302057, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37449834

RESUMO

The structure and vibrational spectroscopy of centrohexaindane, 1, was investigated. This unusual molecule has a quaternary carbon atom that is coordinated to four further such quaternary carbon atoms as its core, each pair of which is bonded to an ortho-phenylene unit. Previous NMR studies have shown that the molecule has tetrahedral (Td ) symmetry in solution. The infrared and Raman spectra of chloroform and deuterochloroform solutions of 1 are completely in agreement with this conclusion, as the only modes that are visible are those allowed for Td symmetry. This is not the case in the solid state: X-ray powder diffraction indicates that the unit cell is triclinic or monoclinic with a volume in excess of 4000 Å3 . The vibrational spectroscopy is consistent with C1 site symmetry and the presence of at least two molecules in the primitive cell. It is likely that the space group is centrosymmetric.

2.
ACS Phys Chem Au ; 3(1): 74-83, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36718264

RESUMO

This work investigates the acid sites in a commercial ZSM-5 zeolite catalyst by a combination of spectroscopic and physical methods. The Brønsted acid sites in such catalysts are associated with the aluminum substituted into the zeolite lattice, which may not be identical to the total aluminum content of the zeolite. Inelastic neutron scattering spectroscopy (INS) directly quantifies the concentrations of Brønsted acid protons, silanol groups, and hydroxyl groups associated with extra-framework aluminum species. The INS measurements show that ∼50% of the total aluminum content of this particular zeolite is extra framework, a conclusion supported by solid-state NMR and ammonia temperature-programmed desorption (TPD) measurements. Evidence for the presence of extra-framework aluminum oxide species is also seen in neutron powder diffraction data from proton- and deuterium-exchanged samples. The differences between results from the different analytical methods are discussed, and the novelty of direct proton counting by INS in this typical commercial catalyst is emphasized.

3.
Langmuir ; 37(5): 1970-1982, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33492974

RESUMO

The nature of an interfacial structure buried within a device assembly is often critical to its function. For example, the dye/TiO2 interfacial structure that comprises the working electrode of a dye-sensitized solar cell (DSC) governs its photovoltaic output. These structures have been determined outside of the DSC device, using ex situ characterization methods; yet, they really should be probed while held within a DSC since they are modulated by the device environment. Dye/TiO2 structures will be particularly influenced by a layer of electrolyte ions that lies above the dye self-assembly. We show that electrolyte/dye/TiO2 interfacial structures can be resolved using in situ neutron reflectometry with contrast matching. We find that electrolyte constituents ingress into the self-assembled monolayer of dye molecules that anchor onto TiO2. Some dye/TiO2 anchoring configurations are modulated by the formation of electrolyte/dye intermolecular interactions. These electrolyte-influencing structural changes will affect dye-regeneration and electron-injection DSC operational processes. This underpins the importance of this in situ structural determination of electrolyte/dye/TiO2 interfaces within representative DSC device environments.

4.
R Soc Open Sci ; 7(7): 200776, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874662

RESUMO

In this work, we have determined the structures of lithium methanesulfonate, Li(CH3SO3), and potassium methanesulfonate, K(CH3SO3), and analysed their vibrational spectra. The lithium salt crystallizes in the monoclinic space group C2/m with two formula units in the primitive cell. The potassium salt is more complex, crystallizing in I4/m with 12 formula units in the primitive cell. The lithium ion is fourfold coordinated in a distorted tetrahedron, while the potassium salt exhibits three types of coordination: six-, seven- and ninefold. Vibrational spectroscopy of the compounds (including the 6Li and 7Li isotopomers) confirms that the correlation previously found, that in the infrared spectra there is a clear distinction between coordinated and not coordinated forms of the methanesulfonate ion, is also valid here. The lithium salt shows a clear splitting of the asymmetric S-O stretch mode, indicating a bonding interaction, while there is no splitting in the spectrum of the potassium salt, consistent with a purely ionic material.

5.
Appl Radiat Isot ; 70(7): 1162-5, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22698817

RESUMO

Sellafield Nuclear Reprocessing Plant in Cumbria contains storage ponds built in the 1950s which was originally intended to hold spent nuclear fuel for reprocessing, and eventual production of weapons grade plutonium. Parts of the spent fuel have corroded; some are buried under a layer of sediment or intertwined with other debris and removal and destruction of this nuclear waste is not a trivial task due to elevated radiation levels. We propose a system in collaboration with the National Nuclear Laboratory (NNL) to characterise the ponds using a system containing three main parts; an ultrasonic SONAR system used to physically map the pond, scintillator based radiation detector (known as RadLine™) used to map the pond from a radiation point of view, and bespoke software intended to combine the physical and radiation plots of this environment to create an overall 3D source map.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...