Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 11(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326490

RESUMO

Aerial web-spinning spiders (including large orb-weavers), as a group, depend almost entirely on flying insects as a food source. The recent widespread loss of flying insects across large parts of western Europe, in terms of both diversity and biomass, can therefore be anticipated to have a drastic negative impact on the survival and abundance of this type of spider. To test the putative importance of such a hitherto neglected trophic cascade, a survey of population densities of the European garden spider Araneus diadematus-a large orb-weaving species-was conducted in the late summer of 2019 at twenty sites in the Swiss midland. The data from this survey were compared with published population densities for this species from the previous century. The study verified the above-mentioned hypothesis that this spider's present-day overall mean population density has declined alarmingly to densities much lower than can be expected from normal population fluctuations (0.7% of the historical values). Review of other available records suggested that this pattern is widespread and not restricted to this region. In conclusion, the decline of this once so abundant spider in the Swiss midland is evidently revealing a bottom-up trophic cascade in response to the widespread loss of flying insect prey in recent decades.

2.
Naturwissenschaften ; 105(7-8): 47, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987431

RESUMO

In this paper, we present an estimate of the predation impact of the global population of insectivorous birds based on 103 (for the most part) published studies of prey consumption (kg ha-1 season-1) of insectivorous birds in seven biome types. By extrapolation-taking into account the global land cover of the various biomes-an estimate of the annual prey consumption of the world's insectivorous birds was obtained. We estimate the prey biomass consumed by the world's insectivorous birds to be somewhere between 400 and 500 million metric tons year-1, but most likely at the lower end of this range (corresponding to an energy consumption of ≈ 2.7 × 1018 J year-1 or ≈ 0.15% of the global terrestrial net primary production). Birds in forests account for > 70% of the global annual prey consumption of insectivorous birds (≥ 300 million tons year-1), whereas birds in other biomes (savannas and grasslands, croplands, deserts, and Arctic tundra) are less significant contributors (≥ 100 million tons year-1). Especially during the breeding season, when adult birds feed their nestlings protein-rich prey, large numbers of herbivorous insects (i.e., primarily in the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, and Orthoptera) supplemented by spiders are captured. The estimates presented in this paper emphasize the ecological and economic importance of insectivorous birds in suppressing potentially harmful insect pests on a global scale-especially in forested areas.


Assuntos
Biomassa , Aves/fisiologia , Comportamento Alimentar , Insetos , Animais , Cadeia Alimentar
3.
Naturwissenschaften ; 104(3-4): 30, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28289774

RESUMO

Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400-800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are "disturbed habitats" with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.


Assuntos
Biomassa , Comportamento Predatório/fisiologia , Aranhas/fisiologia , Animais , Ecossistema , Insetos/fisiologia
4.
PLoS One ; 9(6): e99459, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24940885

RESUMO

More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil). Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae), in two species of the superfamily Ctenoidea (family Ctenidae), and in one species of the superfamily Corinnoidea (family Liocranidae). The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences). There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae]) predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders). Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.


Assuntos
Peixes , Comportamento Predatório , Aranhas/fisiologia , Animais
5.
PLoS One ; 8(3): e58120, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516436

RESUMO

In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.


Assuntos
Quirópteros , Comportamento Predatório , Aranhas , Animais , Tamanho Corporal , Quirópteros/classificação , Feminino , Geografia , Masculino , Aranhas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...