Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 22(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160839

RESUMO

Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Impressão , Dióxido de Silício , Portadores de Fármacos , Estabilidade de Medicamentos , Tamanho da Partícula , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Porosidade , Impressão/métodos
2.
AAPS PharmSciTech ; 18(2): 293-302, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27738876

RESUMO

Printing technologies were recently introduced to the pharmaceutical field for manufacturing of drug delivery systems. Printing allows on demand manufacturing of flexible pharmaceutical doses in a personalized manner, which is critical for a successful and safe treatment of patient populations with specific needs, such as children and the elderly, and patients facing multimorbidity. Printing of pharmaceuticals as technique generates new demands on the quality control procedures. For example, rapid quality control is needed as the printing can be done on demand and at the point of care. This study evaluated the potential use of a handheld colorimetry device for quality control of printed doses of vitamin Bs on edible rice and sugar substrates. The structural features of the substrates with and without ink were also compared. A multicomponent ink formulation with vitamin B1, B2, B3, and B6 was developed. Doses (4 cm2) were prepared by applying 1-10 layers of yellow ink onto the white substrates using thermal inkjet technology. The colorimetric method was seen to be viable in detecting doses up to the 5th and 6th printed layers until color saturation of the yellow color parameter (b*) was observed on the substrates. Liquid chromatography mass spectrometry was used as a reference method for the colorimetry measurements plotted against the number of printed layers. It was concluded that colorimetry could be used as a quality control tool for detection of different doses. However, optimization of the color addition needs to be done to avoid color saturation within the planned dose interval.


Assuntos
Química Farmacêutica/métodos , Colorimetria/métodos , Sistemas de Liberação de Medicamentos/métodos , Impressão/métodos , Cor , Espectrometria de Massas/métodos , Controle de Qualidade , Tecnologia Farmacêutica/métodos , Complexo Vitamínico B/química
3.
Int J Pharm ; 511(1): 606-618, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27444550

RESUMO

The feasibility of a colorimetric technique was investigated in CIELAB color space as an analytical quality control method for content uniformity of printed orodispersible pediatric delivery systems. Inkjet printing was utilized to fabricate orodispersibe film formulations containing propranolol hydrochloride in a colored ink base using three different edible substrates. A thin sweetener coating layer of saccharin was successfully included in the final dosage forms for palatability purposes using a casting knife. Optical microscopy, scanning electron microscopy and scanning white light interferometry analyses were conducted to study the effect of printing on the surface morphology and topography of the substrates. Differential scanning calorimetry and attenuated total reflectance infrared spectroscopy were used to study the solid state properties and possible interactions between the drug and the excipients. The inkjet printing technique deposited precise and uniform escalating doses (0.08-3.16mg) of the active pharmaceutical ingredient onto the substrates (R(2)≥0.9934). A disintegration test with clear end-point detection confirmed that all the substrates meet the requirements of the Ph. Eur. to disintegrate within 180s. The colorimetric technique proved to be a reliable method to distinguish the small color differences between formulations containing an escalating dose of propranolol hydrochloride.


Assuntos
Composição de Medicamentos/normas , Sistemas de Liberação de Medicamentos/métodos , Impressão Tridimensional/normas , Propranolol/administração & dosagem , Propranolol/normas , Controle de Qualidade , Administração Oral , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/normas , Colorimetria/métodos , Corantes/administração & dosagem , Corantes/química , Corantes/normas , Composição de Medicamentos/métodos , Pediatria/métodos , Propranolol/química
4.
Eur J Pharm Sci ; 75: 91-100, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25817804

RESUMO

The aim of this study was to prepare printable inks of the poorly water soluble drug indomethacin (IMC), fabricate printed systems with flexible doses and investigate the effect of ink excipients on the printability, dissolution rate and the solid state properties of the drug. A piezoelectric inkjet printer was used to print 1×1cm(2) squares onto a paper substrate and an impermeable transparency film. l-arginine (ARG) and polyvinylpyrrolidone (PVP) were used as additional formulation excipients. Accurately dosed samples were generated as a result of the ink and droplet formation optimization. Increased dissolution rate was obtained for all formulations. The formulation with IMC and ARG printed on transparency film resulted in a co-amorphous system. The solid state characteristics of the printed drug on porous paper substrates were not possible to determine due to strong interference from the spectra of the carrier substrate. Yet, the samples retained their yellow color after 6months of storage at room temperature and after drying at elevated temperature in a vacuum oven. This suggests that the samples remained either in a dissolved or an amorphous form. Based on the results from this study a formulation guidance for inkjet printing of poorly soluble drugs is also proposed.


Assuntos
Sistemas de Liberação de Medicamentos , Indometacina/química , Tinta , Arginina/química , Liberação Controlada de Fármacos , Excipientes/química , Polivinil/química , Impressão , Pirrolidinas/química , Solubilidade
5.
Biofabrication ; 6(4): 041001, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25336511

RESUMO

Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications.


Assuntos
Bioimpressão/métodos , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Lactose/química , Nanocompostos/química , Prata/química , Biotecnologia/métodos , Substitutos Ósseos , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...