Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285313

RESUMO

MOTIVATION: While the search for associations between genetic markers and complex traits has led to the discovery of tens of thousands of trait-related genetic variants, the vast majority of these only explain a small fraction of the observed phenotypic variation. One possible strategy to overcome this while leveraging biological prior is to aggregate the effects of several genetic markers and to test entire genes, pathways or (sub)networks of genes for association to a phenotype. The latter, network-based genome-wide association studies, in particular suffer from a vast search space and an inherent multiple testing problem. As a consequence, current approaches are either based on greedy feature selection, thereby risking that they miss relevant associations, or neglect doing a multiple testing correction, which can lead to an abundance of false positive findings. RESULTS: To address the shortcomings of current approaches of network-based genome-wide association studies, we propose networkGWAS, a computationally efficient and statistically sound approach to network-based genome-wide association studies using mixed models and neighborhood aggregation. It allows for population structure correction and for well-calibrated P-values, which are obtained through circular and degree-preserving network permutations. networkGWAS successfully detects known associations on diverse synthetic phenotypes, as well as known and novel genes in phenotypes from Saccharomycescerevisiae and Homo sapiens. It thereby enables the systematic combination of gene-based genome-wide association studies with biological network information. AVAILABILITY AND IMPLEMENTATION: https://github.com/BorgwardtLab/networkGWAS.git.


Assuntos
Estudo de Associação Genômica Ampla , Grupos Populacionais , Humanos , Marcadores Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Brief Bioinform ; 22(2): 1515-1530, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33169146

RESUMO

Recent advancements in experimental high-throughput technologies have expanded the availability and quantity of molecular data in biology. Given the importance of interactions in biological processes, such as the interactions between proteins or the bonds within a chemical compound, this data is often represented in the form of a biological network. The rise of this data has created a need for new computational tools to analyze networks. One major trend in the field is to use deep learning for this goal and, more specifically, to use methods that work with networks, the so-called graph neural networks (GNNs). In this article, we describe biological networks and review the principles and underlying algorithms of GNNs. We then discuss domains in bioinformatics in which graph neural networks are frequently being applied at the moment, such as protein function prediction, protein-protein interaction prediction and in silico drug discovery and development. Finally, we highlight application areas such as gene regulatory networks and disease diagnosis where deep learning is emerging as a new tool to answer classic questions like gene interaction prediction and automatic disease prediction from data.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Redes Neurais de Computação , Algoritmos , Descoberta de Drogas , Redes Reguladoras de Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...