Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 106(2): 272-83, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25587046

RESUMO

AIMS: Vascular smooth muscle cell (VSMC) migration in response to arterial wall injury is a critical process in the development of intimal hyperplasia. Cell migration is an energy-demanding process that is predicted to require mitochondrial function. Mitochondria are morphologically dynamic, undergoing continuous shape change through fission and fusion. However, the role of mitochondrial morphology in VSMC migration is not well understood. The aim of the study is to understand how mitochondrial fission contributes to VSMC migration and provides its in vivo relevance in the mouse model of intimal hyperplasia. METHODS AND RESULTS: In primary mouse VSMCs, the chemoattractant PDGF induced mitochondrial shortening through the mitochondrial fission protein dynamin-like protein 1 (DLP1)/Drp1. Perturbation of mitochondrial fission by expressing the dominant-negative mutant DLP1-K38A or by DLP1 silencing greatly decreased PDGF-induced lamellipodia formation and VSMC migration, indicating that mitochondrial fission is an important process in VSMC migration. PDGF induced an augmentation of mitochondrial energetics as well as ROS production, both of which were found to be necessary for VSMC migration. Mechanistically, the inhibition of mitochondrial fission induced an increase of mitochondrial inner membrane proton leak in VSMCs, abrogating the PDGF-induced energetic enhancement and an ROS increase. In an in vivo model of intimal hyperplasia, transgenic mice expressing DLP1-K38A displayed markedly reduced ROS levels and neointima formation in response to femoral artery wire injury. CONCLUSIONS: Mitochondrial fission is an integral process in cell migration, and controlling mitochondrial fission can limit VSMC migration and the pathological intimal hyperplasia by altering mitochondrial energetics and ROS levels.


Assuntos
Movimento Celular/fisiologia , Hiperplasia/metabolismo , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial/fisiologia , Túnica Íntima/patologia , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Camundongos , Mitocôndrias Musculares/patologia , Músculo Liso Vascular/metabolismo , Neointima/patologia , Túnica Íntima/metabolismo
2.
J Biol Chem ; 289(49): 34074-88, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25342755

RESUMO

Mitochondria frequently change their shape through fission and fusion in response to physiological stimuli as well as pathological insults. Disrupted mitochondrial morphology has been observed in cholestatic liver disease. However, the role of mitochondrial shape change in cholestasis is not defined. In this study, using in vitro and in vivo models of bile acid-induced liver injury, we investigated the contribution of mitochondrial morphology to the pathogenesis of cholestatic liver disease. We found that the toxic bile salt glycochenodeoxycholate (GCDC) rapidly fragmented mitochondria, both in primary mouse hepatocytes and in the bile transporter-expressing hepatic cell line McNtcp.24, leading to a significant increase in cell death. GCDC-induced mitochondrial fragmentation was associated with an increase in reactive oxygen species (ROS) levels. We found that preventing mitochondrial fragmentation in GCDC by inhibiting mitochondrial fission significantly decreased not only ROS levels but also cell death. We also induced cholestasis in mouse livers via common bile duct ligation. Using a transgenic mouse model inducibly expressing a dominant-negative fission mutant specifically in the liver, we demonstrated that decreasing mitochondrial fission substantially diminished ROS levels, liver injury, and fibrosis under cholestatic conditions. Taken together, our results provide new evidence that controlling mitochondrial fission is an effective strategy for ameliorating cholestatic liver injury.


Assuntos
Colestase/genética , Dinaminas/genética , Cirrose Hepática/genética , Mitocôndrias Hepáticas/genética , Dinâmica Mitocondrial/genética , Mutação , Adenoviridae/genética , Animais , Morte Celular , Linhagem Celular , Colestase/metabolismo , Colestase/patologia , Ducto Colédoco/lesões , Dinaminas/antagonistas & inibidores , Dinaminas/metabolismo , Expressão Gênica , Vetores Genéticos , Ácido Glicoquenodesoxicólico , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Forma das Organelas/genética , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...