Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 20(1): 31, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29433546

RESUMO

BACKGROUND: Galectin-9 (Gal-9) is a mammalian lectin secreted by endothelial cells that is highly expressed in rheumatoid arthritis synovial tissues and synovial fluid. Roles have been proposed for galectins in the regulation of inflammation and angiogenesis. Therefore, we examined the contribution of Gal-9 to angiogenesis and inflammation in arthritis. METHODS: To determine the role of Gal-9 in angiogenesis, we performed human dermal microvascular endothelial cell (HMVEC) chemotaxis, Matrigel tube formation, and mouse Matrigel plug angiogenesis assays. We also examined the role of signaling molecules in Gal-9-induced angiogenesis by using signaling inhibitors and small interfering RNA (siRNA). We performed monocyte (MN) migration assays in a modified Boyden chamber and assessed the arthritogenicity of Gal-9 by injecting Gal-9 into mouse knees. RESULTS: Gal-9 significantly increased HMVEC migration, which was decreased by inhibitors of extracellular signal-regulating kinases 1/2 (Erk1/2), p38, Janus kinase (Jnk), and phosphatidylinositol 3-kinase. Gal-9 HMVEC-induced tube formation was reduced by Erk1/2, p38, and Jnk inhibitors, and this was confirmed by siRNA knockdown. In mouse Matrigel plug assays, plugs containing Gal-9 induced significantly higher angiogenesis, which was attenuated by a Jnk inhibitor. Gal-9 also induced MN migration, and there was a marked increase in MN ingress when C57BL/6 mouse knees were injected with Gal-9 compared with the control, pointing to a proinflammatory role for Gal-9. CONCLUSIONS: Gal-9 mediates angiogenesis, increases MN migration in vitro, and induces acute inflammatory arthritis in mice, suggesting a novel role for Gal-9 in angiogenesis, joint inflammation, and possibly other inflammatory diseases.


Assuntos
Artrite Reumatoide/metabolismo , Galectinas/metabolismo , Inflamação/metabolismo , Neovascularização Patológica/metabolismo , Animais , Artrite Reumatoide/genética , Movimento Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Feminino , Galectinas/genética , Humanos , Inflamação/genética , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/metabolismo , Neovascularização Patológica/genética , Neovascularização Fisiológica , Interferência de RNA
2.
Clin Exp Pharmacol Physiol ; 31(3): 134-44, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15008955

RESUMO

1. There are no effective ways of screening for potential modulators of volume-regulated anion channels in their native cell type. Generally, cell lines are used for this purpose. Using HeLa and C6 glioma cells, we identified the pyrethroids as a novel class of compounds that inhibit taurine efflux through volume-regulated anion transport pathways in these cells. Subsequently, we examined their effects on volume-regulated anion channels in guinea-pig ventricular myocytes to determine whether results obtained using cell lines could be extrapolated to other tissues. 2. Tetramethrin inhibited taurine efflux in both HeLa and C6 glioma cells with Ki values of approximately 26 and 16 micro mol/L, respectively. Bioallethrin and fenpropathrin inhibited volume-sensitive taurine efflux from C6 glioma cells, but not from HeLa cells. The Ki values for bioallethrin and fenpropathrin were 70 and 59 micro mol/L, respectively. 3. Volume-sensitive I- efflux was observed in HeLa cells but not in C6 glioma cells, suggesting that the taurine efflux pathway in C6 glioma cells may be different to that of the I- efflux pathway. Cyfluthrin, tetramethrin, fenpropathrin, tefluthrin and bioallethrin all significantly inhibited volume-sensitive I- efflux from HeLa cells at 100 micro mol/L. 4. Patch-clamp experiments have shown inhibition of ICl,vol in guinea-pig ventricular myocytes by fenpropathrin, but not tetramethrin or cypermethrin, at 100 micro mol/L. This revealed that further differences exist between ICl,vol in guinea-pig ventricular myocytes and the anion transport pathways in C6 glioma and HeLa cells. 5. In conclusion, we have shown that pyrethroids differentially inhibit volume-regulated anion and taurine efflux in a number of cell types. Because these compounds have different effects in different cells, it is likely that: (i) more than one pathway is involved in the volume-sensitive transport of anions and organic osmolytes; and (ii) the molecular identities of the channels underlying anion transport are different. Finally, for the reasons given above, care should be taken when extrapolating data from one cell type to another. However, in the absence of an existing high-throughput screen, taurine efflux still represents a viable route for the identification of potential modulators of volume-regulated ion channels.


Assuntos
Ânions/metabolismo , Piretrinas/farmacologia , Animais , Transporte Biológico Ativo , Linhagem Celular Tumoral , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/fisiologia , Cobaias , Células HeLa , Humanos , Técnicas In Vitro , Iodetos/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Concentração Osmolar , Técnicas de Patch-Clamp , Ratos , Taurina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...