Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(10): 5565-5573, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201850

RESUMO

Plants are the main sources of many high-value bioactive terpenoids used in the medical, fragrance, and food industries. Increasing demand for these bioactive plants and their derivative products (e.g., cannabis and extracts thereof) requires robust approaches to verify feedstock, identify product adulteration, and ensure product safety. Reported here are single-laboratory validation details for a robust testing method to quantitate select terpenes and terpenoids in dry plant materials and terpenoid-containing vaping liquids (e.g., a derivative product) using high-temperature headspace gas chromatography-mass spectrometry, with glycerol used as a headspace solvent. Validated method recoveries were 75-103%, with excellent repeatability (relative standard deviation (RSD) < 5%) and intermediate precision (RSD < 12%). The use of high-temperature headspace (180 °C) permitted terpene and terpenoid profiles to be monitored at temperatures consistent with vaping conditions.

2.
Rapid Commun Mass Spectrom ; 29(11): 1031-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26044270

RESUMO

RATIONALE: As in the case with positive ion atmospheric pressure photoionization (PI-APPI), the addition of dopants significantly improves the sensitivity of negative ion APPI (NI-APPI). However, the research on dopant-assisted-NI-APPI has been quite limited compared to the studies on dopant-assisted PI-APPI. This work presents the potential of isoprene as a novel dopant for NI-APPI. METHODS: Thirteen compounds, possessing suitable gas-phase ion energetic properties in order to make stable negative ions, were selected. Dopants were continuously introduced into a tee junction prior to the ion source through a fused-silica capillary, while analytes were directly injected into the same tee. Then both were mixed with the continuous solvent from high-performance liquid chromatography (HPLC), nebulized, and entered the source. The nebulized stream was analyzed by APPI tandem quadrupole mass spectrometry in the negative ion mode. RESULTS: The results obtained using isoprene were compared with those obtained by using toluene as a dopant and dopant-free NI-APPI. Isoprene enhanced the ionization intensities of the studied compounds, which were found to be comparable and, in some cases, more effective than toluene. The mechanisms leading to the observed set of negative analyte ions were also discussed. Because in NI-APPI, thermal electrons, which are produced during the photoionization of a dopant, are considered the main reagent ions, both isoprene and toluene promoted the ionization of analytes through the same mechanisms, as expected. CONCLUSIONS: Isoprene was shown to perform well as a novel dopant for NI-APPI. Isoprene has a high photoabsorption cross section in the VUV region; therefore, its photoionization leads to a highly effective production of thermal electrons, which further promotes the ionization of analytes. In addition, isoprene is environmentally benign and less toxic compared to currently used dopants.

3.
J Am Soc Mass Spectrom ; 25(8): 1310-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850441

RESUMO

It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.


Assuntos
Ionização do Ar , Pressão Atmosférica , Modelos Químicos , Ionização do Ar/efeitos da radiação , Fenômenos Químicos/efeitos dos fármacos , Indicadores e Reagentes/química , Indicadores e Reagentes/efeitos da radiação , Luz , Processos Fotoquímicos , Análise Espaço-Temporal , Termodinâmica
4.
J Am Soc Mass Spectrom ; 22(11): 2070-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21952756

RESUMO

We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.

5.
J Am Soc Mass Spectrom ; 20(10): 1868-80, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19660964

RESUMO

We report on the reactions of neutral radical species [OH, Cl, O(3P), H], generated in a typical atmospheric pressure ionization (API) source upon irradiation of the sample gases with either 193 nm laser radiation or 124 nm VUV light, the latter commonly used in atmospheric pressure photoionization (APPI). The present investigations focus on the polycyclic aromatic hydrocarbon pyrene as representative of the aromatic compound class. Experimental results are supported by computational methods: simple kinetic models are used to estimate the temporal evolution of the concentrations of reactants, intermediates, and final products, whereas density functional theory (DFT) energy calculations are carried out to further elucidate the proposed reaction pathways. The neutral radicals are generated upon photolysis of background water and oxygen always present in appreciable mixing ratios in typical API sources. Substantial amounts of oxygenated analyte product ions are observed using both techniques. In contrast, upon atmospheric pressure laser ionization (APLI) with 248 nm radiation, oxygenated products are virtually absent. In addition, kinetic data evaluation yielded a bimolecular rate constant of k = (1.9 +/- 0.9) x 10(-9) cm3 molecule(-1) s(-1) for the reaction of the pyrene radical cation with OH radicals.

6.
Plant Cell Rep ; 26(9): 1481-90, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17483954

RESUMO

The biochemical mechanisms underlying thidiazuron (TDZ)-induced regeneration in plant cells have not been clearly elucidated. Exposure of leaf explants of Echinacea purpurea to a medium containing TDZ results in undifferentiated cell proliferation and differentiated growth as mixed shoot organogenesis and somatic embryogenesis. The current studies were undertaken to determine the potential roles of auxin, indoleamines, and ion signaling in the dedifferentiation and redifferentiation of plant cells. E. purpurea leaf explants were found to contain auxin and the related indoleamine neurotransmitters, melatonin, and serotonin. The levels of these endogenous indoleamines were increased by exposure to TDZ associated with the induction of regeneration. The auxin-transport inhibitor 2,3,5-triiodobenzoic acid and auxin action inhibitor, p-chlorophenoxyisobutyric acid decreased the TDZ-induced regeneration but increased concentrations of endogenous serotonin and melatonin. As well, inhibitors of calcium and sodium transport significantly reduced TDZ-induced morphogenesis while increasing endogenous indoleamine content. These data indicate that TDZ-induced regeneration is the manifestation of a metabolic cascade that includes an initial signaling event, accumulation, and transport of endogenous plant signals such as auxin and melatonin, a system of secondary messengers, and a concurrent stress response.


Assuntos
Aminas/metabolismo , Echinacea/efeitos dos fármacos , Echinacea/fisiologia , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Canais Iônicos/metabolismo , Compostos de Fenilureia/farmacologia , Regeneração/efeitos dos fármacos , Tiadiazóis/farmacologia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Ácido Clofíbrico/farmacologia , Lidocaína/farmacologia , Melatonina/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Serotonina/metabolismo , Ácidos Tri-Iodobenzoicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...