Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(13): 4650-6, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26973017

RESUMO

Low packing densities are key structural features of amphidynamic crystals built with static and mobile components. Here we report a loosely packed crystal of dendrimeric rotor 2 and the fast dynamics of all its aromatic groups, both resulting from the hyperbranched structure of the molecule. Compound 2 was synthesized with a convergent strategy to construct a central phenylene core with stators consisting of two layers of triarylmethyl groups. Single crystal X-ray diffraction analysis confirmed a low-density packing structure consisting of one molecule of 2 and approximately eight solvent molecules per unit cell. Three isotopologues of 2 were synthesized to study the motion of each segment of the molecule in the solid state using variable temperature quadrupolar echo (2)H NMR spectroscopy. Line shape analysis of the spectra reveals that the central phenylene, the six branch phenylenes, and the 18 periphery phenyls all display megahertz rotational dynamics in the crystals at ambient temperature. Arrhenius analysis of the data gives similar activation energies and pre-exponential factors for different parts of the structure. The observed pre-exponential factors are 4-6 orders of magnitude greater than those of elementary site-exchange processes, indicating that the dynamics are not dictated by static energetic potentials. Instead, the activation energies for rotations in the crystals of 2 are controlled by temperature dependent local structural fluctuations and crystal fluidity.


Assuntos
Dendrímeros/química , Modelos Moleculares , Cristalografia por Raios X , Cristais Líquidos , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Temperatura
2.
J Org Chem ; 75(8): 2482-91, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20232842

RESUMO

Samples of 4,4'-bis(3,3,3-tri-d(5)-phenylpropynyl)biphenyl 2, 9,10-bis(3,3,3-tri-d(5)-phenylpropynyl)anthracene 3, 1,4-bis(3,3,3-tri-d(5)-phenylpropynyl)naphthalene 4, and 4,4'-bis(3,3,3-tri-d(5)-phenylpropynyl)-1,1'-binaphthyl 5 were prepared via a Sonogashira coupling of 3,3,3-tri-d(5)-phenylpropyne 7 and the appropriate aryl dibromide. Single crystal X-ray diffraction structures were obtained for an o-xylene clathrate of 2 and for solvent-free crystals of 3. All four molecular rotors were characterized by CPMAS (13)C NMR experiments with varying contact times in order to determine whether the carbon signals of the central rotator group could be selectively enhanced and studied without interference or overlap of signals from the deuterated stator, which is insensitive to the {(1)H}-(13)C cross-polarization method. It was shown that the (13)C signals of the natural abundance rotator group can be selectively observed with short contact times (ca. 50 micros) without interference from other (13)C signals in the molecule. Variable-temperature CPMAS (13)C NMR studies with a crystalline o-xylene solvate of biphenylene rotor 2 suggested a 2-fold flipping process in the fast exchange regime, even at temperatures as low as 199 K (-74 degrees C). Indirect support for this was obtained by studies carried out with a disordered, solvent-free solid, obtained by fast precipitation from hexanes and dichloromethane, which displayed slower dynamics within the same temperature range with an activation energy of 8.7 kcal/mol and a pre-exponential factor of 4.9 x 10(9) s(-1). Confirmation of an exchange process in the megahertz regime for the crystalline solvate was obtained by variable-temperature quadrupolar echo (2)H NMR data acquired with samples prepared with a deuterated biphenylene rotator and a natural abundance stator. Although rotational exchange occurs in the solvated samples with a slightly lower barrier of 7.4 kcal/mol, the main difference with the precipitated solid comes from the pre-exponential factor, which is nearly 3 orders of magnitude greater with a value of 2.5 x 10(12) s(-1). On the basis of these differences, we speculate that efficient rotational motion in the solvated crystals may take advantage of long-range lattice vibrations that couple with molecular modes and that the lack of long-range order may be responsible for the low pre-exponential factor observed in the disordered crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...