Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(5): e61126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38919213

RESUMO

INTRODUCTION: Disturbances in potassium levels can induce ventricular arrhythmias and heighten mortality in patients with ST-elevation myocardial infarction (STEMI). This study evaluates the influence of sK levels on seven-day mortality and incidence of ventricular arrhythmias in STEMI patients to further improve clinical guidelines and outcomes. METHODS: This retrospective, propensity-matched study analyzed approximately 250,000 acute STEMI patients from 55 major academic medical centers/healthcare organizations (HCOs) in the US Collaborative Network of the TriNetX database. The sK levels recorded on the day of STEMI diagnosis were categorized into four cohorts: sK ≤ 3.4 (hypokalemia), 3.5 ≤ sK ≤ 4.5 (normal-control), 4.6 ≤ sK ≤ 5.0 (high-normal), and sK ≥ 5.1 (hyperkalemia). Patient cohorts were propensity-matched using linear and logistic regression for demographics. Outcomes of seven-day mortality, ventricular tachycardia (VT), and ventricular fibrillation (VF) were compared between these cohorts and the control group. RESULTS: The analysis showed hypokalemia was linked to significantly higher seven-day mortality (7.2% vs. 4.3%; RR 1.69; p<0.001), and increased rates of VT and VF. Similarly, hyperkalemia was associated with elevated mortality (12.7% vs. 4.6%; RR 2.76; p<0.001), VT, and VF rates. High-normal sK levels showed increased mortality (7.4% vs. 4.7%; RR 1.58; p<0.001), but unchanged VT or VF rates compared to the normal sK group. CONCLUSION: This comprehensive study highlights the correlation of sK levels with death in STEMI patients, revealing a nearly doubled risk of mortality with hypokalemia and almost triples with hyperkalemia. More notably, the mortality for STEMIs is higher for high-normal vs normal sK values. Additionally, hypokalemia and hyperkalemia were found to significantly elevate VT and VF risks.

2.
Am J Physiol Endocrinol Metab ; 315(4): E676-E693, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509432

RESUMO

Obesity is associated with adipose tissue inflammation that contributes to insulin resistance. Zinc finger protein 36 (Zfp36) is an mRNA-binding protein that reduces inflammation by binding to cytokine transcripts and promoting their degradation. We hypothesized that myeloid-specific deficiency of Zfp36 would lead to increased adipose tissue inflammation and reduced insulin sensitivity in diet-induced obese mice. As expected, wild-type (Control) mice became obese and diabetic on a high-fat diet, and obese mice with myeloid-specific loss of Zfp36 [knockout (KO)] demonstrated increased adipose tissue and liver cytokine mRNA expression compared with Control mice. Unexpectedly, in glucose tolerance testing and hyperinsulinemic-euglycemic clamp studies, myeloid Zfp36 KO mice demonstrated improved insulin sensitivity compared with Control mice. Obese KO and Control mice had similar macrophage infiltration of the adipose depots and similar peripheral cytokine levels, but lean and obese KO mice demonstrated increased Kupffer cell (KC; the hepatic macrophage)-expressed Mac2 compared with lean Control mice. Insulin resistance in obese Control mice was associated with enhanced Zfp36 expression in KCs. Compared with Control mice, KO mice demonstrated increased hepatic mRNA expression of a multitude of classical (M1) inflammatory cytokines/chemokines, and this M1-inflammatory hepatic milieu was associated with enhanced nuclear localization of IKKß and the p65 subunit of NF-κB. Our data confirm the important role of innate immune cells in regulating hepatic insulin sensitivity and lipid metabolism, challenge-prevailing models in which M1 inflammatory responses predict insulin resistance, and indicate that myeloid-expressed Zfp36 modulates the response to insulin in mice.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/genética , Fígado Gorduroso/genética , Inflamação/genética , Resistência à Insulina/genética , Obesidade/genética , Tristetraprolina/genética , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo , Tristetraprolina/imunologia , Tristetraprolina/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 309(4): L348-59, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26092996

RESUMO

Although the majority of patients with asthma are well controlled by inhaled glucocorticoids (GCs), patients with severe asthma are poorly responsive to GCs. This latter group is responsible for a disproportionate share of health care costs associated with asthma. Recent studies in immune cells have incriminated interferon-γ (IFN-γ) as a possible trigger of GC insensitivity in severe asthma; however, little is known about the role of IFN-γ in modulating GC effects in other clinically relevant nonimmune cells, such as airway epithelial cells. We hypothesized that IFN-γ-induced JAK/STAT-associated signaling pathways in airway epithelial cells are insensitive to GCs and that strategies aimed at inhibiting JAK/STAT pathways can restore steroid responsiveness. Using Western blot analysis we found that all steps of the IFN-γ-induced JAK/STAT signaling pathway were indeed GC insensitive. Transfection of cells with reporter plasmid showed IFN-γ-induced STAT1-dependent gene transcription to be also GC insensitive. Interestingly, real-time PCR analysis showed that IFN-γ-inducible genes (IIGs) were differentially affected by GC, with CXCL10 being GC sensitive and CXCL11 and IFIT2 being GC insensitive. Further investigation showed that the differential sensitivity of IIGs to GC was due to their variable dependency to JAK/STAT vs. NF-κB signaling pathways with GC-sensitive IIGs being more NF-κB dependent and GC-insensitive IIGs being more JAK/STAT dependent. Importantly, transfection of cells with siRNA-STAT1 was able to restore steroid responsiveness of GC-insensitive IIGs. Taken together, our results show the insensitivity of IFN-γ-induced JAK/STAT signaling pathways to GC effects in epithelial cells and also suggest that targeting STAT1 could restore GC responsiveness in patients with severe asthma.


Assuntos
Androstadienos/farmacologia , Células Epiteliais/metabolismo , Glucocorticoides/farmacologia , Interferon gama/fisiologia , Fator de Transcrição STAT1/metabolismo , Transporte Ativo do Núcleo Celular , Idoso , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Feminino , Fluticasona , Humanos , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Mucosa Respiratória/patologia , Transdução de Sinais , Transcrição Gênica
4.
Am J Respir Cell Mol Biol ; 50(2): 301-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24024586

RESUMO

Like many steroid receptors, the glucocorticoid (GC) receptor (GR) is a phosphoprotein. Although there are multiple phosphorylation sites critical for GR transcriptional activity (i.e., serine [S]203, S211, and S226), their respective role in driving GR functions is highly cell specific. We have recently identified protein phosphatase 5 as an essential Ser/Thr phosphatase responsible for impairing GR function via S211 dephosphorylation in airway smooth muscle (ASM) cells. Because p38 mitogen-activated protein kinase (MAPK) directly phosphorylates GR in different cell types in a stimulus- and cell-dependent manner, we investigated the role of p38 MAPK on GR phosphorylation and function in ASM cells. Cells were transfected with 100 nM p38 MAPK small interfering RNA or 2 µg MAPK kinase 3 expression vector (a specific kinase that directly activates p38 MAPK) in the presence or absence of fluticasone (100 nM) and/or p38 MAPK pharmacological inhibitor SB203580. We found that p38 MAPK blockade positively regulates GR nuclear translocation and GR-dependent induction of the steroid-target gene GC-induced leucine zipper in a hormone-independent manner. We also found that p38 MAPK-dependent regulation of GR functions was associated with a differential action on GR phosphorylation at S203 and S211 residues. This study demonstrated that the inactive state of GR in resting conditions is not only ensured by the absence of the GC ligand but also by p38 MAPK-dependent phosphorylation of unliganded GR at specific residues, which appears to be important in determining the overall GC responsiveness of ASM cells.


Assuntos
Glucocorticoides/farmacologia , Miócitos de Músculo Liso/metabolismo , Receptores de Glucocorticoides/metabolismo , Sistema Respiratório/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Humanos , Imidazóis/farmacologia , Zíper de Leucina/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Sistema Respiratório/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...