Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Metab ; 82: 101906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423253

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) occurs because of islet infiltration by autoreactive immune cells leading to destruction of beta cells and it is becoming evident that beta cell dysfunction partakes in this process. We previously reported that genetic deletion and pharmacological antagonism of the cannabinoid 1 receptor (CB1) in mice improves insulin synthesis and secretion, upregulates glucose sensing machinery, favors beta cell survival by reducing apoptosis, and enhances beta cell proliferation. Moreover, beta cell specific deletion of CB1 protected mice fed a high fat high sugar diet against islet inflammation and beta cell dysfunction. Therefore, we hypothesized that it would mitigate the dysfunction of beta cells in the precipitating events leading to T1D. METHODS: We genetically deleted CB1 specifically from beta cells in non-obese diabetic (NOD; NOD RIP Cre+ Cnr1fl/fl) mice. We evaluated female NOD RIP Cre+ Cnr1fl/fl mice and their NOD RIP Cre-Cnr1fl/fl and NOD RIP Cre+ Cnr1Wt/Wt littermates for onset of hyperglycemia over 26 weeks. We also examined islet morphology, islet infiltration by immune cells and beta cell function and proliferation. RESULTS: Beta cell specific deletion of CB1 in NOD mice significantly reduced the incidence of hyperglycemia by preserving beta cell function and mass. Deletion also prevented beta cell apoptosis and aggressive insulitis in NOD RIP Cre+ Cnr1fl/fl mice compared to wild-type littermates. NOD RIP Cre+ Cnr1fl/fl islets maintained normal morphology with no evidence of beta cell dedifferentiation or appearance of extra islet beta cells, indicating that protection from autoimmunity is inherent to genetic deletion of beta cell CB1. Pancreatic lymph node Treg cells were significantly higher in NOD RIP Cre+ Cnr1fl/flvs NOD RIP Cre-Cnr1fl/fl. CONCLUSIONS: Collectively these data demonstrate how protection of beta cells from metabolic stress during the active phase of T1D can ameliorate destructive insulitis and provides evidence for CB1 as a potential pharmacologic target in T1D.


Assuntos
Canabinoides , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Ilhotas Pancreáticas , Camundongos , Feminino , Animais , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Canabinoides/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo
3.
Biology (Basel) ; 13(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38248467

RESUMO

Cellular senescence is defined as an irreversible cell cycle arrest accompanied by morphological and physiological alterations during aging. Red ginseng (RG), processed from fresh ginseng (Panax ginseng C.A. Meyer) with a one-time steaming and drying process, is a well-known beneficial herbal medicine showing antioxidant, anti-inflammatory, and anti-aging properties. The current study aimed to investigate the benefits of RG in alleviating hepatic cellular senescence and its adverse effects in 19-month-old aged mice. We applied two different intervention methods and durations to compare RG's effects in a time-dependent manner: (1) oral gavage injection for 4 weeks and (2) ad libitum intervention for 14 weeks. We observed that 4-week RG administration was exerted to maintain insulin homeostasis against developing age-associated insulin insensitivity and suppressed cellular senescence pathway in the liver and primary hepatocytes. Moreover, with remarkable improvement of insulin homeostasis, 14-week RG supplementation downregulated the activation of c-Jun N-terminal kinase (JNK) and its downstream transcriptional factor nuclear factor-κB (NF-κB) in aged mice. Lastly, RG treatment significantly reduced the senescence-associated ß-galactosidase (SA-ß-gal)-positive cells in primary hepatocytes and ionizing radiation (IR)-exposed mouse embryonic fibroblasts (MEFs). Taken together, we suggest that RG can be a promising candidate for a senolytic substance by preventing hepatic cellular senescence.

4.
NEJM Evid ; 2(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38145006

RESUMO

BACKGROUND: We sought to determine whether ongoing taste disturbance in the postacute sequelae of coronavirus disease 2019 period is associated with persistent virus in primary taste tissue. METHODS: We performed fungiform papillae biopsies on 16 patients who reported taste disturbance lasting more than 6 weeks after molecularly determined severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Then, on multiple occasions, we rebiopsied 10 of those patients who still had taste complaints for at least 6 months postinfection. Fungiform papillae obtained from other patients before March 2020 served as negative controls. We performed hematoxylin and eosin staining to examine fungiform papillae morphology and immunofluorescence and fluorescence in situ hybridization to look for evidence of persistent viral infection and immune response. RESULTS: In all patients, we found evidence of SARS-CoV-2, accompanying immune response and misshapen or absent taste buds with loss of intergemmal neurite fibers. Six patients reported normal taste perception by 6 months postinfection and were not further biopsied. In the remaining 10, the virus was eliminated in a seemingly random fashion from their fungiform papillae, but four patients still, by history, reported incomplete return to preinfection taste perception by the time we wrote this report. CONCLUSIONS: Our data show a temporal association in patients between functional taste, taste papillae morphology, and the presence of SARS-CoV-2 and its associated immunological changes. (Funded by Intramural Research Program/National Institute on Aging/National Institute of Allergy and Infectious Diseases/National Institutes of Health; ClinicalTrials.gov numbers NCT03366168 and NCT04565067.).


Assuntos
COVID-19 , Disgeusia , Papilas Gustativas , Humanos , COVID-19/complicações , Hibridização in Situ Fluorescente , SARS-CoV-2/genética , Paladar , Papilas Gustativas/anatomia & histologia , Papilas Gustativas/patologia , Percepção Gustatória , Língua/anatomia & histologia , Língua/patologia , Estados Unidos , Disgeusia/etiologia , Disgeusia/patologia
5.
Antioxidants (Basel) ; 12(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37371895

RESUMO

Dietary interventions with bioactive compounds have been found to suppress the accumulation of senescent cells and senescence-associated secretory phenotypes (SASPs). One such compound, curcumin (CUR), has beneficial health and biological effects, including antioxidant and anti-inflammatory properties, but its ability to prevent hepatic cellular senescence is unclear. The objective of this study was to investigate the effects of dietary CUR as an antioxidant on hepatic cellular senescence and determine its benefits on aged mice. We screened the hepatic transcriptome and found that CUR supplementation led to the downregulation of senescence-associated hepatic gene expressions in both usually fed and nutritionally challenged aged mice. Our results showed that CUR supplementation enhanced antioxidant properties and suppressed mitogen-activated protein kinase (MAPK) signaling cascades in the liver, particularly c-Jun N-terminal kinase (JNK) in aged mice and p38 in diet-induced obese aged mice. Furthermore, dietary CUR decreased the phosphorylation of nuclear factor-κB (NF-κB), a downstream transcription factor of JNK and p38, and inhibited the mRNA expression of proinflammatory cytokines and SASPs. The potency of CUR administration was demonstrated in aged mice via enhanced insulin homeostasis along with declined body weight. Taken together, these results suggest that CUR supplementation may be a nutritional strategy to prevent hepatic cellular senescence.

6.
Biology (Basel) ; 11(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892965

RESUMO

Cellular senescence, one of the hallmarks of aging, refers to permanent cell cycle arrest and is accelerated during the aging process. Black ginseng (BG), prepared by a repeated steaming and drying process nine times from fresh ginseng (Panax ginseng C.A. Meyer), is garnering attention for herbal medicine due to its physiological benefits against reactive oxygen species (ROS), inflammation, and oncogenesis, which are common cues to induce aging. However, which key nodules in the cellular senescence process are regulated by BG supplementation has not been elucidated yet. In this study, we investigated the effects of BG on cellular senescence using in vitro and aged mouse models. BG-treated primary mouse embryonic fibroblasts (MEFs) in which senescence was triggered by ionizing radiation (IR) expressed less senescence-associated ß-galactosidase (SA-ß-gal)-positive stained cells. In our aged mice (18 months old) study, BG supplementation (300 mg/kg) for 4 weeks altered hepatic genes involved in the aging process. Furthermore, we found BG supplementation downregulated age-related inflammatory genes, especially in the complement system. Based on this observation, we demonstrated that BG supplementation led to less activation of the canonical senescence pathway, p53-dependent p21 and p16, in multiple metabolic organs such as liver, skeletal muscle and white adipose tissue. Thus, we suggest that BG is a potential senolytic candidate that retards cellular senescence.

7.
Aging (Albany NY) ; 14(1): 225-239, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017319

RESUMO

Although aging is a physiological process to which all organisms are subject, the presence of obesity and type 2 diabetes accelerates biological aging. Recent studies have demonstrated the causal relationships between dietary interventions suppressing obesity and type 2 diabetes and delaying the onset of age-related endocrine changes. Curcumin, a natural antioxidant, has putative therapeutic properties such as improving insulin sensitivity in obese mice. However, how curcumin contributes to maintaining insulin homeostasis in aged organisms largely remains unclear. Thus, the objective of this study is to examine the pleiotropic effect of dietary curcumin on insulin homeostasis in a diet-induced obese (DIO) aged mouse model. Aged (18-20 months old) male mice given a high-fat high-sugar diet supplemented with 0.4% (w/w) curcumin (equivalent to 2 g/day for a 60 kg adult) displayed a different metabolic phenotype compared to mice given a high-fat high-sugar diet alone. Furthermore, curcumin supplementation altered hepatic gene expression profiling, especially insulin signaling and senescence pathways. We then mechanistically investigated how curcumin functions to fine-tune insulin sensitivity. We found that curcumin supplementation increased hepatic insulin-degrading enzyme (IDE) expression levels and preserved islet integrity, both outcomes that are beneficial to preserving good health with age. Our findings suggest that the multifaceted therapeutic potential of curcumin can be used as a protective agent for age-induced metabolic diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Curcumina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Açúcares da Dieta/efeitos adversos , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Animais , Composição Corporal , Açúcares da Dieta/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Obesidade/induzido quimicamente , Distribuição Aleatória
8.
Diabetes ; 70(12): 2947-2956, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649926

RESUMO

Human insulin (INS) gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene (Ins2) isoforms are expressed in brain choroid plexus (ChP) epithelium cells, where insulin secretion is regulated by serotonin and not by glucose. We further compared human INS isoform expression in postmortem ChP and islets of Langerhans. We uncovered novel INS upstream open reading frame isoforms and their protein products. In addition, we found a novel alternatively spliced isoform that translates to a 74-amino acid (AA) proinsulin containing a shorter 19-AA C-peptide sequence, herein designated Cα-peptide. The middle portion of the conventional C-peptide contains ß-sheet (GQVEL) and hairpin (GGGPG) motifs that are not present in Cα-peptide. Islet amyloid polypeptide (IAPP) is not expressed in ChP, and its amyloid formation was inhibited in vitro more efficiently by Cα-peptide than by C-peptide. Of clinical relevance, the ratio of the 74-AA proinsulin to proconvertase-processed Cα-peptide was significantly increased in islets from type 2 diabetes mellitus autopsy donors. Intriguingly, 100 years after the discovery of insulin, we found that INS isoforms are present in ChP from insulin-deficient autopsy donors.


Assuntos
Peptídeo C/metabolismo , Plexo Corióideo/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Adulto , Sequência de Aminoácidos , Amiloide/análise , Amiloide/química , Amiloide/metabolismo , Animais , Autopsia , Peptídeo C/análise , Peptídeo C/química , Plexo Corióideo/química , Plexo Corióideo/patologia , Humanos , Insulina/análise , Insulina/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/análise , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/patologia , Camundongos , Proinsulina/análise , Proinsulina/química , Proinsulina/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
9.
Front Pharmacol ; 12: 809965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35115945

RESUMO

Type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from loss of insulin-secreting ß-cells in islets of Langerhans. The loss of ß-cells is initiated when self-tolerance to ß-cell-derived contents breaks down, which leads to T cell-mediated ß-cell damage and, ultimately, ß-cell apoptosis. Many investigations have demonstrated the positive effects of antagonizing cannabinoid receptor 1 (CB1R) in metabolic diseases such as fatty liver disease, obesity, and diabetes mellitus, but the role of cannabinoid receptor 2 (CB2R) in such diseases is relatively unknown. Activation of CB2R is known for its immunosuppressive roles in multiple sclerosis, rheumatoid arthritis, Crohn's, celiac, and lupus diseases, and since autoimmune diseases can share common environmental and genetic factors, we propose CB2R specific agonists may also serve as disease modifiers in diabetes mellitus. The CNR2 gene, which encodes CB2R protein, is the result of a gene duplication of CNR1, which encodes CB1R protein. This ortholog evolved rapidly after transitioning from invertebrates to vertebrate hundreds of million years ago. Human specific CNR2 isoforms are induced by inflammation in pancreatic islets, and a CNR2 nonsynonymous SNP (Q63R) is associated with autoimmune diseases. We collected evidence from the literature and from our own studies demonstrating that CB2R is involved in regulating the inflammasome and especially release of the cytokine interleukin 1B (IL-1ß). Furthermore, CB2R activation controls intracellular autophagy and may regulate secretion of extracellular vesicles from adipocytes that participate in recycling of lipid droplets, dysregulation of which induces chronic inflammation and obesity. CB2R activation may play a similar role in islets of Langerhans. Here, we will discuss future strategies to unravel what roles, if any, CB2R modifiers potentially play in T1DM.

10.
Cell Death Dis ; 11(12): 1044, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298885

RESUMO

Cannabinoid 1 receptor (CB1R) expression is upregulated in the liver with viral hepatitis, cirrhosis, and both alcoholic and non-alcoholic fatty liver disease (FLD), whereas its expression is muted under usual physiological conditions. Inhibiting CB1R has been shown to be beneficial in preserving hepatic function in FLD but it is unclear if inhibiting CB1R during an inflammatory response to an acute hepatic injury, such as toxin-induced injury, would also be beneficial. We found that intrinsic CB1R in hepatocytes regulated liver inflammation-related gene transcription. We tested if nullification of hepatocyte-specific CB1R (hCNR1-/-) in mice protects against concanavalin A (Con A)-induced liver injury. We looked for evidence of liver damage and markers of inflammation in response to Con A by measuring liver enzyme levels and proinflammatory cytokines (e.g., TNF-α, IL-1ß, IL-6, IL-17) in serum collected from hCNR1-/- and control mice. We observed a shift to the right in the dose-response curve for liver injury and inflammation in hCNR1-/- mice. We also found less inflammatory cell infiltration and focal necrosis in livers of hCNR1-/- mice compared to controls, resulting from downregulated apoptotic markers. This anti-apoptotic mechanism results from increased activation of nuclear factor kappa B (NF-κB), especially cAMP-dependent cannabinoid signaling and membrane-bound TNF-α, via downregulated TNF-α receptor 2 (TNFR2) transcription levels. Collectively, these findings provide insight into involvement of CB1R in the pathogenesis of acute liver injury.


Assuntos
Concanavalina A/toxicidade , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , NF-kappa B/metabolismo , Receptor CB1 de Canabinoide/deficiência , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Hepatócitos/efeitos dos fármacos , Inflamação/patologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Modelos Biológicos , Ligação Proteica , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
11.
JCI Insight ; 4(23)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31647782

RESUMO

The choroid plexus (ChP) is a highly vascularized tissue found in the brain ventricles, with an apical epithelial cell layer surrounding fenestrated capillaries. It is responsible for the production of most of the cerebrospinal fluid (CSF) in the ventricular system, subarachnoid space, and central canal of the spinal cord, while also constituting the blood-CSF barrier (BCSFB). In addition, epithelial cells of the ChP (EChP) synthesize neurotrophic factors and other signaling molecules that are released into the CSF. Here, we show that insulin is produced in EChP of mice and humans, and its expression and release are regulated by serotonin. Insulin mRNA and immune-reactive protein, including C-peptide, are present in EChP, as detected by several experimental approaches, and appear in much higher levels than any other brain region. Moreover, insulin is produced in primary cultured mouse EChP, and its release, albeit Ca2+ sensitive, is not regulated by glucose. Instead, activation of the 5HT2C receptor by serotonin treatment led to activation of IP3-sensitive channels and Ca2+ mobilization from intracellular storage, leading to insulin secretion. In vivo depletion of brain serotonin in the dorsal raphe nucleus negatively affected insulin expression in the ChP, suggesting an endogenous modulation of ChP insulin by serotonin. Here, we show for the first time to our knowledge that insulin is produced by EChP in the brain, and its release is modulated at least by serotonin but not glucose.


Assuntos
Plexo Corióideo/metabolismo , Insulina/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Líquido Cefalorraquidiano/metabolismo , Células Epiteliais , Expressão Gênica , Glucose , Humanos , Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , RNA Mensageiro/metabolismo
12.
Nutr Metab (Lond) ; 16: 48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372175

RESUMO

BACKGROUND: Although type 2 diabetes mellitus (T2DM) is primarily characterized by sustained high levels of circulating glucose, other factors, such as obesity, chronic inflammation, fatty liver, and islet dysfunction significantly contribute to the development of this disease. To date, curcumin (CUR), a natural polyphenol and primary component of turmeric, shows putative therapeutic properties such as reducing the incidence of obesity-related diseases in mice. However, the mechanism by which CUR regulates insulin levels remains unclear. METHODS: This study investigates how dietary CUR improves insulin clearance and maintains a proper range of circulating insulin level in the diet-induced obesity (DIO) mouse model. Male C57BL/6 J mice were fed a control, a high fat/high sugar (HFS) or a HFS diet containing 0.4% (w/w) curcumin (HFS + CUR) (N = 16 per group) for 16 weeks. RESULTS: Mice given HFS + CUR had reduced body weight and fat accumulation in the liver and had lower blood insulin levels under fasting conditions compared to mice on HFS alone, resulting from significantly improved insulin clearance via upregulation of hepatic insulin-degrading enzyme (IDE). We also observed restoration of phosphoinositide 3-kinase (PI3K), especially class Ia catalytic subunits, p110α and p110ß, and class Ib regulatory subunit, p101, and phosphorylated protein kinase B (AKT) expression levels in liver on HFS + CUR diet. Additionally, HFS + CUR fed mice had significantly smaller islets of Langerhans and increased glucagon contents compared to HFS fed mice, indicating less secretion of insulin in pancreas. The expression of thioredoxin interacting protein (TXNIP), a pro-oxidant and pro-apoptotic protein, was significantly elevated in mouse and human islets cultured under HFS mimicking conditions, which was mitigated by CUR treatment. CONCLUSIONS: CUR supplementation in obese subjects may alleviate the burden imposed by HFS diets. Our data indicate administration of dietary CUR reinstates PI3K, AKT and IDE levels in obese mice. Additionally, CUR treatment preserves islet integrity by downregulation of TXNIP transcription levels. Therefore, dietary CUR may have the potential to serve as a novel therapeutic agent to address the underlying links of obesity and T2DM.

13.
FASEB J ; 33(5): 5850-5863, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726112

RESUMO

Sarcopenic obesity, the combination of skeletal muscle mass and function loss with an increase in body fat, is associated with physical limitations, cardiovascular diseases, metabolic stress, and increased risk of mortality. Cannabinoid receptor type 1 (CB1R) plays a critical role in the regulation of whole-body energy metabolism because of its involvement in controlling appetite, fuel distribution, and utilization. Inhibition of CB1R improves insulin secretion and insulin sensitivity in pancreatic ß-cells and hepatocytes. We have now developed a skeletal muscle-specific CB1R-knockout (Skm-CB1R-/-) mouse to study the specific role of CB1R in muscle. Muscle-CB1R ablation prevented diet-induced and age-induced insulin resistance by increasing IR signaling. Moreover, muscle-CB1R ablation enhanced AKT signaling, reducing myostatin expression and increasing IL-6 secretion. Subsequently, muscle-CB1R ablation increased myogenesis through its action on MAPK-mediated myogenic gene expression. Consequently, Skm-CB1R-/- mice had increased muscle mass and whole-body lean/fat ratio in obesity and aging. Muscle-CB1R ablation improved mitochondrial performance, leading to increased whole-body muscle energy expenditure and improved physical endurance, with no change in body weight. These results collectively show that CB1R in muscle is sufficient to regulate whole-body metabolism and physical performance and is a novel target for the treatment of sarcopenic obesity. -González-Mariscal, I., Montoro, R. A., O'Connell, J. F., Kim, Y., Gonzalez-Freire, M., Liu, Q.-R., Alfaras, I., Carlson, O. D., Lehrmann, E., Zhang, Y., Becker, K. G., Hardivillé, S., Ghosh, P., Egan, J. M. Muscle cannabinoid 1 receptor regulates Il-6 and myostatin expression, governing physical performance and whole-body metabolism.


Assuntos
Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Composição Corporal , Peso Corporal , Linhagem Celular , Dieta , Feminino , Hepatócitos/metabolismo , Insulina/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/metabolismo
14.
Acta Pharmacol Sin ; 40(3): 387-397, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30202012

RESUMO

Targeting peripheral CB1R is desirable for the treatment of metabolic syndromes without adverse neuropsychiatric effects. We previously reported a human hCB1b isoform that is selectively enriched in pancreatic beta-cells and hepatocytes, providing a potential peripheral therapeutic hCB1R target. It is unknown whether there are peripherally enriched mouse and rat CB1R (mCB1 and rCB1, respectively) isoforms. In this study, we found no evidence of peripherally enriched rodent CB1 isoforms; however, some mCB1R isoforms are absent in peripheral tissues. We show that the mouse Cnr1 gene contains six exons that are transcribed from a single promoter. We found that mCB1A is a spliced variant of extended exon 1 and protein-coding exon 6; mCB1B is a novel spliced variant containing unspliced exon 1, intron 1, and exon 2, which is then spliced to exon 6; and mCB1C is a spliced variant including all 6 exons. Using RNAscope in situ hybridization, we show that the isoforms mCB1A and mCB1B are expressed at a cellular level and colocalized in GABAergic neurons in the hippocampus and cortex. RT-qPCR reveals that mCB1A and mCB1B are enriched in the brain, while mCB1B is not expressed in the pancreas or the liver. Rat rCB1R isoforms are differentially expressed in primary cultured neurons, astrocytes, and microglia. We also investigated modulation of Cnr1 expression by insulin in vivo and carried out in silico modeling of CB1R with JD5037, a peripherally restricted CB1R inverse agonist, using the published crystal structure of hCB1R. The results provide models for future CB1R peripheral targeting.


Assuntos
Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Sequência de Aminoácidos , Animais , Ácidos Araquidônicos/química , Agonistas de Receptores de Canabinoides/química , Córtex Cerebral/metabolismo , Endocanabinoides/química , Éxons , Glicerídeos/química , Humanos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Regiões Promotoras Genéticas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirazóis/química , Ratos Long-Evans , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/química , Sulfonamidas/química
15.
Diabetologia ; 61(6): 1470-1483, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29497784

RESUMO

AIMS/HYPOTHESIS: The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell. Deciphering the exact function of CB1R in beta cells has been confounded by the expression of this receptor on multiple tissues involved in regulating metabolism. Thus, in models of global genetic or pharmacological CB1R blockade, it is difficult to distinguish the indirect effects of improved insulin sensitivity in peripheral tissues from the direct effects of inhibiting CB1R in beta cells per se. To assess the direct contribution of beta cell CB1R to metabolism, we designed a mouse model that allows us to determine the role of CB1R specifically in beta cells in the context of whole-body metabolism. METHODS: We generated a beta cell specific Cnr1 (CB1R) knockout mouse (ß-CB1R-/-) to study the long-term consequences of CB1R ablation on beta cell function in adult mice. We measured beta cell function, proliferation and viability in these mice in response to a high-fat/high-sugar diet and induction of acute insulin resistance with the insulin receptor antagonist S961. RESULTS: ß-CB1R-/- mice had increased fasting (153 ± 23% increase at 10 weeks of age) and stimulated insulin secretion and increased intra-islet cAMP levels (217 ± 33% increase at 10 weeks of age), resulting in primary hyperinsulinaemia, as well as increased beta cell viability, proliferation and islet area (1.9-fold increase at 10 weeks of age). Hyperinsulinaemia led to insulin resistance, which was aggravated by a high-fat/high-sugar diet and weight gain, although beta cells maintained their insulin secretory capacity in response to glucose. Strikingly, islets from ß-CB1R-/- mice were protected from diet-induced inflammation. Mechanistically, we show that this is a consequence of curtailment of oxidative stress and reduced activation of the NLRP3 inflammasome in beta cells. CONCLUSIONS/INTERPRETATION: Our data demonstrate CB1R to be a negative regulator of beta cell function and a mediator of islet inflammation under conditions of metabolic stress. Our findings point to beta cell CB1R as a therapeutic target, and broaden its potential to include anti-inflammatory effects in both major forms of diabetes. DATA AVAILABILITY: Microarray data have been deposited at GEO (GSE102027).


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptor CB1 de Canabinoide/genética , Animais , Peso Corporal , Proliferação de Células , Sobrevivência Celular , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Inflamação/patologia , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo
16.
Proc Natl Acad Sci U S A ; 115(8): E1876-E1885, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432159

RESUMO

Emerging findings suggest that compromised cellular bioenergetics and DNA repair contribute to the pathogenesis of Alzheimer's disease (AD), but their role in disease-defining pathology is unclear. We developed a DNA repair-deficient 3xTgAD/Polß+/- mouse that exacerbates major features of human AD including phosphorylated Tau (pTau) pathologies, synaptic dysfunction, neuronal death, and cognitive impairment. Here we report that 3xTgAD/Polß+/- mice have a reduced cerebral NAD+/NADH ratio indicating impaired cerebral energy metabolism, which is normalized by nicotinamide riboside (NR) treatment. NR lessened pTau pathology in both 3xTgAD and 3xTgAD/Polß+/- mice but had no impact on amyloid ß peptide (Aß) accumulation. NR-treated 3xTgAD/Polß+/- mice exhibited reduced DNA damage, neuroinflammation, and apoptosis of hippocampal neurons and increased activity of SIRT3 in the brain. NR improved cognitive function in multiple behavioral tests and restored hippocampal synaptic plasticity in 3xTgAD mice and 3xTgAD/Polß+/- mice. In general, the deficits between genotypes and the benefits of NR were greater in 3xTgAD/Polß+/- mice than in 3xTgAD mice. Our findings suggest a pivotal role for cellular NAD+ depletion upstream of neuroinflammation, pTau, DNA damage, synaptic dysfunction, and neuronal degeneration in AD. Interventions that bolster neuronal NAD+ levels therefore have therapeutic potential for AD.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , NAD/farmacologia , Niacinamida/análogos & derivados , Animais , Disfunção Cognitiva , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Neurogênese/efeitos dos fármacos , Niacinamida/farmacologia , Compostos de Piridínio , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Proteínas tau/metabolismo
17.
Sci Rep ; 6: 33302, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27641999

RESUMO

Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic ß-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in ß-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in ß-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism.


Assuntos
Glucose/metabolismo , Hepatócitos/metabolismo , Células Secretoras de Insulina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Perfilação da Expressão Gênica/métodos , Hepatócitos/efeitos dos fármacos , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Doenças Metabólicas/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirazóis/metabolismo , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/genética , Rimonabanto , Homologia de Sequência de Aminoácidos , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...