Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(12): 105661, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36567716

RESUMO

Strategies targeting methane (CH4) and nitrous oxide (N2O) emissions are critical to meeting global climate targets. Existing literature estimates the emissions of these gases from specific sectors, but this knowledge must be synthesized to prioritize and incentivize CH4 and N2O mitigation. Accordingly, we review emissions sources and mitigation strategies in all key sectors (fuel extraction and combustion, landfilling, agriculture, wastewater treatment, and chemical industry) and the role of carbon markets in reducing emissions. The most accessible reduction opportunities are in the hydrocarbon extraction and waste sectors, where half (>3 Gt-CO2e/year) of the emissions in these sectors could be mitigated at no net cost. In total, 60% of CH4 emissions can be mitigated at less than $50/t-CO2. Expanding the scope of carbon markets to include these emissions could provide cost-effective decarbonization through 2050. We provide recommendations for carbon markets to improve emissions reductions and set prices to appropriately incentivize mitigation.

2.
Sci Adv ; 7(7)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579709

RESUMO

Hydrogels hold promise in agriculture as reservoirs of water in dry soil, potentially alleviating the burden of irrigation. However, confinement in soil can markedly reduce the ability of hydrogels to absorb water and swell, limiting their widespread adoption. Unfortunately, the underlying reason remains unknown. By directly visualizing the swelling of hydrogels confined in three-dimensional granular media, we demonstrate that the extent of hydrogel swelling is determined by the competition between the force exerted by the hydrogel due to osmotic swelling and the confining force transmitted by the surrounding grains. Furthermore, the medium can itself be restructured by hydrogel swelling, as set by the balance between the osmotic swelling force, the confining force, and intergrain friction. Together, our results provide quantitative principles to predict how hydrogels behave in confinement, potentially improving their use in agriculture as well as informing other applications such as oil recovery, construction, mechanobiology, and filtration.

3.
Soft Matter ; 15(17): 3620-3626, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30973562

RESUMO

Diverse applications-ranging from enhanced oil recovery, filtration, and lab on a chip sorting-rely on the flow-induced transport of deformable particles in porous media. However, how fluid flow can force such particles to squeeze through pore constrictions of complex geometries is poorly understood. Here, we study the transport of model deformable particles in millifluidic porous media with constrictions of tunable aspect ratio. We find that multiple particles can unexpectedly squeeze through large-aspect ratio constrictions, even when isolated particles cannot. This phenomenon arises from pairwise flow-mediated interactions between the particles: when one particle is trapped at a constriction, the increased fluid flow around it enables a second to squeeze past due to locally increased hydrodynamic stresses. This cooperative mechanism causes the particles to ultimately sort themselves by size through the pore space. By revealing a new mode of deformable particle transport in porous media, our work helps to inform real-world applications and provides a straightforward way to sort particles based on size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...