Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 411(4): 765-80, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21726567

RESUMO

DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Western Blotting , Pegada de DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Desoxirribonuclease I/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/genética , Mutação , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência do Ácido Nucleico
2.
PLoS One ; 6(4): e18824, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21533111

RESUMO

Pseudomonas aeruginosa is especially adept at colonizing the airways of individuals afflicted with the autosomal recessive disease cystic fibrosis (CF). CF patients suffer from chronic airway inflammation, which contributes to lung deterioration. Once established in the airways, P. aeruginosa continuously adapts to the changing environment, in part through acquisition of beneficial mutations via a process termed pathoadaptation. MutS and DinB are proposed to play opposing roles in P. aeruginosa pathoadaptation: MutS acts in replication-coupled mismatch repair, which acts to limit spontaneous mutations; in contrast, DinB (DNA polymerase IV) catalyzes error-prone bypass of DNA lesions, contributing to mutations. As part of an ongoing effort to understand mechanisms underlying P. aeruginosa pathoadaptation, we characterized hydrogen peroxide (H(2)O(2))-induced phenotypes of isogenic P. aeruginosa strains bearing different combinations of mutS and dinB alleles. Our results demonstrate an unexpected epistatic relationship between mutS and dinB with respect to H(2)O(2)-induced cell killing involving error-prone repair and/or tolerance of oxidized DNA lesions. In striking contrast to these error-prone roles, both MutS and DinB played largely accurate roles in coping with DNA lesions induced by ultraviolet light, mitomycin C, or 4-nitroquinilone 1-oxide. Models discussing roles for MutS and DinB functionality in DNA damage-induced mutagenesis, particularly during CF airway colonization and subsequent P. aeruginosa pathoadaptation are discussed.


Assuntos
Dano ao DNA , Epistasia Genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Pseudomonas aeruginosa/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Catálise , Peróxido de Hidrogênio/metabolismo , Mutagênese , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...