Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Metabolites ; 14(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38786752

RESUMO

Metabolomics, especially urine-based studies, offers incredible promise for the discovery and development of clinically impactful biomarkers. However, due to the unique challenges of urine, a highly precise and reproducible workflow for NMR-based urine metabolomics is lacking. Using 1D and 2D non-uniform sampled (NUS) 1H-13C NMR spectroscopy, we systematically explored how changes in hydration or specific gravity (SG) and pH can impact biomarker discovery. Further, we examined additional sources of error in metabolomics studies and identified Navigator molecules that could monitor for those biases. Adjustment of SG to 1.002-1.02 coupled with a dynamic sum-based peak thresholding eliminates false positives associated with urine hydration and reduces variation in chemical shift. We identified Navigator molecules that can effectively monitor for inconsistencies in sample processing, SG, protein contamination, and pH. The workflow described provides quality assurance and quality control tools to generate high-quality urine metabolomics data, which is the first step in biomarker discovery.

2.
Metabolites ; 14(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38786757

RESUMO

Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of this method, multiple HILIC columns and mobile phase conditions were compared, the robustness of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality. Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy and precision. The use of these U-13C-metabolites as internal standards improved the goodness of fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite ratios to internal standards were consistently lower than 7% and less than 10% across batches that were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to identify biomarkers, was confirmed using a large sample set.

3.
Metabolites ; 12(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35208223

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease, causing loss of motor and nonmotor function. Diagnosis is based on clinical symptoms that do not develop until late in the disease progression, at which point the majority of the patients' dopaminergic neurons are already destroyed. While many PD cases are idiopathic, hereditable genetic risks have been identified, including mutations in the gene for LRRK2, a multidomain kinase with roles in autophagy, mitochondrial function, transcription, molecular structural integrity, the endo-lysosomal system, and the immune response. A definitive PD diagnosis can only be made post-mortem, and no noninvasive or blood-based disease biomarkers are currently available. Alterations in metabolites have been identified in PD patients, suggesting that metabolomics may hold promise for PD diagnostic tools. In this study, we sought to identify metabolic markers of PD in plasma. Using a 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) NMR spectroscopy metabolomics platform coupled with machine learning (ML), we measured plasma metabolites from approximately age/sex-matched PD patients with G2019S LRRK2 mutations and non-PD controls. Based on the differential level of known and unknown metabolites, we were able to build a ML model and develop a Biomarker of Response (BoR) score, which classified male LRRK2 PD patients with 79.7% accuracy, 81.3% sensitivity, and 78.6% specificity. The high accuracy of the BoR score suggests that the metabolomics/ML workflow described here could be further utilized in the development of a confirmatory diagnostic for PD in larger patient cohorts. A diagnostic assay for PD will aid clinicians and their patients to quickly move toward a definitive diagnosis, and ultimately empower future clinical trials and treatment options.

4.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500549

RESUMO

Gadolinium is a paramagnetic relaxation enhancement (PRE) agent that accelerates the relaxation of metabolite nuclei. In this study, we noted the ability of gadolinium to improve the sensitivity of two-dimensional, non-uniform sampled NMR spectral data collected from metabolomics samples. In time-equivalent experiments, the addition of gadolinium increased the mean signal intensity measurement and the signal-to-noise ratio for metabolite resonances in both standard and plasma samples. Gadolinium led to highly linear intensity measurements that correlated with metabolite concentrations. In the presence of gadolinium, we were able to detect a broad array of metabolites with a lower limit of detection and quantification in the low micromolar range. We also observed an increase in the repeatability of intensity measurements upon the addition of gadolinium. The results of this study suggest that the addition of a gadolinium-based PRE agent to metabolite samples can improve NMR-based metabolomics.


Assuntos
Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Metabolômica/métodos , Aumento da Imagem/métodos , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído
5.
Prog Biophys Mol Biol ; 165: 8-18, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419530

RESUMO

Breast cancer is the most common cancer in women worldwide and despite improved treatment strategies, it persists as the second leading cause of death of women globally. Overall prognosis drops drastically once the cancer has metastasized, which is also associated with resistance to therapy. The evolution from a localized breast cancer to metastatic disease is complex and multifactorial. Metabolic reprogramming is a pre-requisite for this transition. In this graphical review, we provide an overview of altered metabolic pathways observed in metastatic breast cancer (mBC) and detail how metabolite biomarkers could serve as a novel class of precision medicine tools to improve the diagnosis, monitoring, and treatment of mBC.


Assuntos
Neoplasias da Mama , Biomarcadores , Neoplasias da Mama/diagnóstico , Feminino , Humanos
7.
Metabolites ; 10(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429340

RESUMO

Metabolomics is the comprehensive study of metabolism, the biochemical processes that sustain life. By comparing metabolites between healthy and disease states, new insights into disease mechanisms can be uncovered. NMR is a powerful analytical method to detect and quantify metabolites. Standard one-dimensional (1D) 1H-NMR metabolite profiling is informative but challenged by significant chemical shift overlap. Multi-dimensional NMR can increase resolution, but the required long acquisition times lead to limited throughput. Non-uniform sampling (NUS) is a well-accepted mode of acquiring multi-dimensional NMR data, enabling either reduced acquisition times or increased sensitivity in equivalent time. Despite these advantages, the technique is not widely applied to metabolomics. In this study, we evaluated the utility of NUS 1H-13C heteronuclear single quantum coherence (HSQC) for semi-quantitative metabolomics. We demonstrated that NUS improved sensitivity compared to uniform sampling (US). We verified that the NUS measurement maintains linearity, making it possible to detect metabolite changes across samples and studies. Furthermore, we calculated the lower limit of detection and quantification (LOD/LOQ) of common metabolites. Finally, we demonstrate that the measurements are repeatable on the same system and across different systems. In conclusion, our results detail the analytical capability of NUS and, in doing so, empower the future use of NUS 1H-13C HSQC in metabolomic studies.

8.
Biotechnol J ; 14(1): e1800195, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29799175

RESUMO

Patient X: A 67-year-old Caucasian man slips on a patch of ice. He has abrasions to his hands and has sustained significant damage to his hip. At the emergency room, he informs clinicians he takes atorvastatin, metformin, and glimepiride to treat hypertension and Type 2 Diabetes Mellitus (T2DM). X-rays reveal a fractured hip, which will require total hip replacement surgery.


Assuntos
Biotecnologia/métodos , Saúde Pública , Edição de Genes , Humanos , Medicina de Precisão , Engenharia Tecidual
9.
Onco Targets Ther ; 11: 6827-6838, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349315

RESUMO

BACKGROUND: Cancer cells have altered bioenergetics, which contributes to their ability to proliferate, survive in unusual microenvironments, and invade other tissues. Changes in glucose metabolism can have pleomorphic effects on tumor cells. METHODS: To investigate potential mechanisms responsible for the increased malignancy associated with altered glucose metabolism, we used an unbiased nuclear magnetic resonance spectroscopy screening method to identify glucose metabolites differentially produced in a highly malignant human triple-negative breast cancer (TNBC) cell line (BPLER) and a less malignant isogenic TNBC cell line (HMLER). RESULTS: N-acetylneuraminic acid (Neu5Ac), the predominant sialic acid derivative in mammalian cells, which forms the terminal sugar on mucinous cell surface glycoproteins, was the major glucose metabolite that differed. Neu5Ac was ~7-fold more abundant in BPLER than HMLER. Loss of Neu5Ac by enzymatic removal or siRNA knockdown of cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS), which activates cellular sialic acids for glycoprotein conjugation, had no significant effect on cell proliferation, but decreased the ability of BPLER to invade through a basement membrane. Conversely, overexpressing CMAS in HMLER increased invasivity. TNBCs in The Cancer Genome Atlas also had significantly more CMAS copy number variations and higher mRNA expression than non-TNBC, which have a better prognosis. CMAS knockdown in BPLER ex vivo blocked xenograft formation in mice. CONCLUSION: Neu5Ac is selectively highly enriched in aggressive TNBC, and CMAS, the enzyme required for sialylation, may play an important role in TNBC tumor formation and invasivity.

11.
Occup Environ Med ; 74(5): 336-343, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27919058

RESUMO

OBJECTIVE: With increasing emphasis on early and frequent mobilisation of patients in acute care, safe patient handling and mobilisation practices need to be integrated into these quality initiatives. We completed a programme evaluation of a safe patient handling and mobilisation programme within the context of a hospital-wide patient care improvement initiative that utilised a systems approach and integrated safe patient equipment and practices into patient care plans. METHODS: Baseline and 12-month follow-up surveys of 1832 direct patient care workers assessed work practices and self-reported pain while an integrated employee payroll and injury database provided recordable injury rates collected concurrently at 2 hospitals: the study hospital with the programme and a comparison hospital. RESULTS: Safe and unsafe patient handling practice scales at the study hospital improved significantly (p<0.0001 and p=0.0031, respectively), with no differences observed at the comparison hospital. We observed significant decreases in recordable neck and shoulder (Relative Risk (RR)=0.68, 95% CI 0.46 to 1.00), lifting and exertion (RR=0.73, 95% CI 0.60 to 0.89) and pain and inflammation (RR=0.78, 95% CI 0.62 to 1.00) injury rates at the study hospital. Changes in rates at the comparison hospital were not statistically significant. CONCLUSIONS: Within the context of a patient mobilisation initiative, a safe patient handling and mobilisation programme was associated with improved work practices and a reduction in recordable worker injuries. This study demonstrates the potential impact of utilising a systems approach based on recommended best practices, including integration of these practices into the patient's plan for care.


Assuntos
Movimentação e Reposicionamento de Pacientes/métodos , Dor Musculoesquelética/prevenção & controle , Doenças Profissionais/prevenção & controle , Traumatismos Ocupacionais/prevenção & controle , Gestão da Segurança/métodos , Adulto , Análise de Variância , Boston/epidemiologia , Bases de Dados Factuais , Feminino , Pessoal de Saúde , Promoção da Saúde/métodos , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Dor Musculoesquelética/epidemiologia , Sistema Musculoesquelético/lesões , Doenças Profissionais/epidemiologia , Traumatismos Ocupacionais/epidemiologia , Esforço Físico , Avaliação de Programas e Projetos de Saúde , Melhoria de Qualidade
12.
J Biol Chem ; 290(29): 17909-17922, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26045559

RESUMO

Lin28 is an evolutionarily conserved RNA-binding protein that inhibits processing of pre-let-7 microRNAs (miRNAs) and regulates translation of mRNAs that control developmental timing, pluripotency, metabolism, and tumorigenesis. The RNA features that mediate Lin28 binding to the terminal loops of let-7 pre-miRNAs and to Lin28-responsive elements (LREs) in mRNAs are not well defined. Here we show that Lin28 target datasets are enriched for RNA sequences predicted to contain stable planar structures of 4 guanines known as G-quartets (G4s). The imino NMR spectra of pre-let-7 loops and LREs contain resonances characteristic of G4 hydrogen bonds. These sequences bind to a G4-binding fluorescent dye, N-methyl-mesoporphyrin IX (NMM). Mutations and truncations in the RNA sequence that prevent G4 formation also prevent Lin28 binding. The addition of Lin28 to a pre-let-7 loop or an LRE reduces G4 resonance intensity and NMM binding, suggesting that Lin28 may function to remodel G4s. Further, we show that NMM inhibits Lin28 binding. Incubation of a human embryonal carcinoma cell line with NMM reduces its stem cell traits. In particular it increases mature let-7 levels, decreases OCT4, HMGA1, CCNB1, CDK4, and Lin28A protein, decreases sphere formation, and inhibits colony formation. Our results suggest a previously unknown structural feature of Lin28 targets and a new strategy for manipulating Lin28 function.


Assuntos
Quadruplex G , MicroRNAs/química , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Humanos , Mesoporfirinas/metabolismo , Camundongos , MicroRNAs/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(51): 18201-6, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25404306

RESUMO

Angiogenin (ANG) is a stress-activated ribonuclease that promotes the survival of motor neurons. Ribonuclease inactivating point mutations are found in a subset of patients with ALS, a fatal neurodegenerative disease with no cure. We recently showed that ANG cleaves tRNA within anticodon loops to produce 5'- and 3'-fragments known as tRNA-derived, stress-induced RNAs (tiRNAs). Selected 5'-tiRNAs (e.g., tiRNA(Ala), tiRNA(Cys)) cooperate with the translational repressor Y-box binding protein 1 (YB-1) to displace the cap-binding complex eIF4F from capped mRNA, inhibit translation initiation, and induce the assembly of stress granules (SGs). Here, we show that translationally active tiRNAs assemble unique G-quadruplex (G4) structures that are required for translation inhibition. We show that tiRNA(Ala) binds the cold shock domain of YB-1 to activate these translational reprogramming events. We discovered that 5'-tiDNA(Ala) (the DNA equivalent of 5'-tiRNA(Ala)) is a stable tiRNA analog that displaces eIF4F from capped mRNA, inhibits translation initiation, and induces the assembly of SGs. The 5'-tiDNA(Ala) also assembles a G4 structure that allows it to enter motor neurons spontaneously and trigger a neuroprotective response in a YB-1-dependent manner. Remarkably, the ability of 5'-tiRNA(Ala) to induce SG assembly is inhibited by G4 structures formed by pathological GGGGCC repeats found in C9ORF72, the most common genetic cause of ALS, suggesting that functional interactions between G4 RNAs may contribute to neurodegenerative disease.


Assuntos
Quadruplex G , Fármacos Neuroprotetores/farmacologia , RNA de Transferência/farmacologia , Ribonuclease Pancreático/farmacologia , Anticódon , Humanos , Fármacos Neuroprotetores/química , RNA de Transferência/química
14.
Am J Ind Med ; 57(7): 810-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24737462

RESUMO

BACKGROUND: Hospital patient care (PC) workers have high rates of workplace injuries, particularly musculoskeletal injuries. Despite a wide spectrum of documented health hazards, little is known about the association between psychosocial factors at work and OSHA-recordable musculoskeletal injuries. METHODS: PC-workers (n = 1,572, 79%) completed surveys assessing a number of organizational, psychosocial and psychological variables. Associations between the survey responses and injury records were tested using bivariate and multivariate analyses. RESULTS: A 5% of the PC-workers had at least one OSHA-recordable musculoskeletal injury over the year, and the injuries were significantly associated with: organizational factors (lower people-oriented culture), psychosocial factors (lower supervisor support), and structural factors (job title: being a patient care assistant). CONCLUSIONS: The results show support for a multifactorial understanding of musculoskeletal injuries in hospital PC-workers. An increased focus on the various dimensions associated with injury reports, particularly the organizational and psychosocial factors, could contribute to more efficient interventions and programs.


Assuntos
Sistema Musculoesquelético/lesões , Traumatismos Ocupacionais/etiologia , Recursos Humanos em Hospital , Adulto , Idoso , Estudos Transversais , Feminino , Inquéritos Epidemiológicos , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Cultura Organizacional , Recursos Humanos em Hospital/psicologia , Psicologia Industrial , Fatores de Risco
15.
J Mol Biol ; 425(14): 2397-411, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23557833

RESUMO

Nanobodies are single-domain fragments of camelid antibodies that are emerging as versatile tools in biotechnology. We describe here the interactions of a specific nanobody, NbSyn87, with the monomeric and fibrillar forms of α-synuclein (αSyn), a 140-residue protein whose aggregation is associated with Parkinson's disease. We have characterized these interactions using a range of biophysical techniques, including nuclear magnetic resonance and circular dichroism spectroscopy, isothermal titration calorimetry and quartz crystal microbalance measurements. In addition, we have compared the results with those that we have reported previously for a different nanobody, NbSyn2, also raised against monomeric αSyn. This comparison indicates that NbSyn87 and NbSyn2 bind with nanomolar affinity to distinctive epitopes within the C-terminal domain of soluble αSyn, comprising approximately amino acids 118-131 and 137-140, respectively. The calorimetric and quartz crystal microbalance data indicate that the epitopes of both nanobodies are still accessible when αSyn converts into its fibrillar structure. The apparent affinities and other thermodynamic parameters defining the binding between the nanobody and the fibrils, however, vary significantly with the length of time that the process of fibril formation has been allowed to progress and with the conditions under which formation occurs, indicating that the environment of the C-terminal domain of αSyn changes as fibril assembly takes place. These results demonstrate that nanobodies are able to target forms of potentially pathogenic aggregates that differ from each other in relatively minor details of their structure, such as those associated with fibril maturation.


Assuntos
Multimerização Proteica , Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Calorimetria , Dicroísmo Circular , Mapeamento de Epitopos , Cinética , Espectroscopia de Ressonância Magnética , Ligação Proteica , Desnaturação Proteica , Anticorpos de Domínio Único/imunologia , Termodinâmica , alfa-Sinucleína/imunologia
16.
Workplace Health Saf ; 61(3): 117-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23452130

RESUMO

The aim of this study was to assess the relationship between psychosocial factors at work and multi-site musculoskeletal pain among patient care workers. In a survey of 1,572 workers from two hospitals, occupational psychosocial factors and health outcomes of workers with single and multi-site pain were evaluated using items from the Job Content Questionnaire that was designed to measure psychological demands, decision latitude, and social support. An adapted Nordic Questionnaire provided data on the musculoskeletal pain outcome. Covariates included body mass index, age, gender, and occupation. The analyses revealed statistically significant associations between psychosocial demands and multi-site musculoskeletal pain among patient care associates, nurses, and administrative personnel, both men and women. Supervisor support played a significant role for nurses and women. These results remained statistically significant after adjusting for covariates. These results highlight the associations between workplace psychosocial strain and multi-site musculoskeletal pain, setting the stage for future longitudinal explorations.


Assuntos
Dor Musculoesquelética/epidemiologia , Recursos Humanos de Enfermagem Hospitalar/estatística & dados numéricos , Doenças Profissionais/epidemiologia , Estresse Psicológico/epidemiologia , Adulto , Idoso , Estudos Transversais , Feminino , Pesquisas sobre Atenção à Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Cell Rep ; 1(6): 689-702, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22813744

RESUMO

Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we identified the binding sites of eIF1 and eIF2ß on eIF5-CTD and found that they partially overlapped. Mutating select eIF5 residues in the common interface specifically disrupts interaction with both factors. Genetic and biochemical evidence indicates that these eIF5-CTD mutations impair start codon recognition and impede eIF1 release from the PIC by abrogating eIF5-CTD binding to eIF2ß. This study provides mechanistic insight into the role of eIF5-CTD's dynamic interplay with eIF1 and eIF2ß in switching PICs from an open to a closed state at start codons.


Assuntos
Códon de Iniciação/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 5 em Eucariotos/química , Fator de Iniciação 5 em Eucariotos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sítios de Ligação , Sequência Conservada , Epitopos/metabolismo , Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/química , Evolução Molecular , Deleção de Genes , Teste de Complementação Genética , Humanos , Cinética , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X
18.
PLoS Genet ; 7(11): e1002363, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102825

RESUMO

A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.


Assuntos
Genes Supressores de Tumor , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , Transdução de Sinais/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Proliferação de Células , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Células HCT116 , Células HeLa , Humanos , Células K562 , Sistema de Sinalização das MAP Quinases , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Fosforilação , RNA Mensageiro/genética
19.
PLoS Genet ; 7(9): e1002242, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21935352

RESUMO

MicroRNAs regulate networks of genes to orchestrate cellular functions. MiR-125b, the vertebrate homologue of the Caenorhabditis elegans microRNA lin-4, has been implicated in the regulation of neural and hematopoietic stem cell homeostasis, analogous to how lin-4 regulates stem cells in C. elegans. Depending on the cell context, miR-125b has been proposed to regulate both apoptosis and proliferation. Because the p53 network is a central regulator of both apoptosis and proliferation, the dual roles of miR-125b raise the question of what genes in the p53 network might be regulated by miR-125b. By using a gain- and loss-of-function screen for miR-125b targets in humans, mice, and zebrafish and by validating these targets with the luciferase assay and a novel miRNA pull-down assay, we demonstrate that miR-125b directly represses 20 novel targets in the p53 network. These targets include both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra, Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l, in the p53 network. We found that, although each miRNA-target pair was seldom conserved, miR-125b regulation of the p53 pathway is conserved at the network level. Our results lead us to propose that miR-125b buffers and fine-tunes p53 network activity by regulating the dose of both proliferative and apoptotic regulators, with implications for tissue stem cell homeostasis and oncogenesis.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas , Células 3T3 , Animais , Linhagem Celular , Proliferação de Células , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , Microinjeções , Peixe-Zebra
20.
Proc Natl Acad Sci U S A ; 108(22): 9244-9, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21576478

RESUMO

Human immune cells infected by HIV naturally contain high uracil content, and HIV reverse transcriptase (RT) does not distinguish between dUTP and dTTP. Many DNA viruses and retroviruses encode a dUTPase or uracil-DNA glycosylase (UNG) to counteract uracil incorporation. However, although HIV virions are thought to contain cellular UNG2, replication of HIV produced in cells lacking UNG activity does not appear to be impaired. Here we show that HIV reverse transcripts generated in primary human immune cells are heavily uracilated (>500 uracils per 10 kb HIV genome). We find that HIV DNA uracilation, rather than being dangerous, may promote the early phase of the viral life cycle. Shortly after reverse transcription, the ends of the HIV DNA are activated by the viral integrase (IN) in preparation for chromosomal insertion. However, the activated ends can attack the viral DNA itself in a suicidal side pathway, called autointegration. We find here that uracilation of target DNA inhibits the strand transfer of HIV DNA ends by IN, thereby inhibiting autointegration and facilitating chromosomal integration and viral replication. When uracilation is increased by incubating uracil-poor cells in the presence of increasing concentrations of dUTP or by infecting with virus that contains the cytosine deaminase APOBEC3G (A3G), the proportion of reverse transcripts that undergo suicidal autointegration decreases. Thus, HIV tolerates, or even benefits from, nonmutagenic uracil incorporation during reverse transcription in human immune cells.


Assuntos
Linfócitos T CD4-Positivos/virologia , DNA Viral/genética , HIV/genética , Mutação , Uracila/química , Replicação Viral , HIV/metabolismo , Humanos , Sistema Imunitário , Macrófagos/virologia , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/metabolismo , Fatores de Tempo , Uracila-DNA Glicosidase/metabolismo , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...