Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 10: 17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987448

RESUMO

BACKGROUND: Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) is a Calvin Cycle enzyme involved in CO2 assimilation. It is thought to be a major cause of photosynthetic inefficiency, suffering from both a slow catalytic rate and lack of specificity due to a competing reaction with oxygen. Revealing and understanding the engineering rules that dictate Rubisco's activity could have a significant impact on photosynthetic efficiency and crop yield. RESULTS: This paper describes the purification and characterisation of a number of hydrophobically distinct populations of Rubisco from both Spinacia oleracea and Brassica oleracea extracts. The populations were obtained using a novel and rapid purification protocol that employs hydrophobic interaction chromatography (HIC) as a form I Rubisco enrichment procedure, resulting in distinct Rubisco populations of expected enzymatic activities, high purities and integrity. CONCLUSIONS: We demonstrate here that HIC can be employed to isolate form I Rubisco with purities and activities comparable to those obtained via ion exchange chromatography (IEC). Interestingly, and in contrast to other published purification methods, HIC resulted in the isolation of a number of hydrophobically distinct Rubisco populations. Our findings reveal a so far unaccounted diversity in the hydrophobic properties within form 1 Rubisco. By employing HIC to isolate and characterise Spinacia oleracea and Brassica oleracea, we show that the presence of these distinct Rubisco populations is not species specific, and we report for the first time the kinetic properties of Rubisco from Brassica oleracea extracts. These observations may aid future studies concerning Rubisco's structural and functional properties.

2.
Plant Physiol ; 159(1): 105-17, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22422940

RESUMO

Cellulose is the most abundant biopolymer in the world, the main load-bearing element in plant cell walls, and represents a major sink for carbon fixed during photosynthesis. Previous work has shown that photosynthetic activity is partially regulated by carbohydrate sinks. However, the coordination of cellulose biosynthesis with carbohydrate metabolism and photosynthesis is not well understood. Here, we demonstrate that cellulose biosynthesis inhibition (CBI) leads to reductions in transcript levels of genes involved in photosynthesis, the Calvin cycle, and starch degradation in Arabidopsis (Arabidopsis thaliana) seedlings. In parallel, we show that CBI induces changes in carbohydrate distribution and influences Rubisco activase levels. We find that the effects of CBI on gene expression and carbohydrate metabolism can be neutralized by osmotic support in a concentration-dependent manner. However, osmotic support does not suppress CBI-induced metabolic changes in seedlings impaired in mechanoperception (mid1 complementing activity1 [mca1]) and osmoperception (cytokinin receptor1 [cre1]) or reactive oxygen species production (respiratory burst oxidase homolog DF [rbohDF]). These results show that carbohydrate metabolism is responsive to changes in cellulose biosynthesis activity and turgor pressure. The data suggest that MCA1, CRE1, and RBOHDF-derived reactive oxygen species are involved in the regulation of osmosensitive metabolic changes. The evidence presented here supports the notion that cellulose and carbohydrate metabolism may be coordinated via an osmosensitive mechanism.


Assuntos
Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Celulose/biossíntese , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Benzamidas/farmacologia , Sobrevivência Celular , Celulose/antagonistas & inibidores , Celulose/genética , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Pressão Osmótica , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polietilenoglicóis/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...