Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 82(15): 4584-4591, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208116

RESUMO

UNLABELLED: SigB is the main stress gene regulator in Listeria monocytogenes affecting the expression of more than 150 genes and thus contributing to multiple-stress resistance. Despite its clear role in most stresses, its role in oxidative stress is uncertain, as results accompanying the loss of sigB range from hyperresistance to hypersensitivity. Previously, these differences have been attributed to strain variation. In this study, we show conclusively that unlike for all other stresses, loss of sigB results in hyperresistance to H2O2 (more than 8 log CFU ml(-1) compared to the wild type) in aerobically grown stationary-phase cultures of L. monocytogenes strains 10403S and EGD-e. Furthermore, growth at 30°C resulted in higher resistance to oxidative stress than that at 37°C. Oxidative stress resistance seemed to be higher with higher levels of oxygen. Under anaerobic conditions, the loss of SigB in 10403S did not affect survival against H2O2, while in EGD-e, it resulted in a sensitive phenotype. During exponential phase, minor differences occurred, and this result was expected due to the absence of sigB transcription. Catalase tests were performed under all conditions, and stronger catalase results corresponded well with a higher survival rate, underpinning the important role of catalase in this phenotype. Furthermore, we assessed the catalase activity in protein lysates, which corresponded with the catalase tests and survival. In addition, reverse transcription-PCR (RT-PCR) showed no differences in transcription between the wild type and the ΔsigB mutant in various oxidative stress genes. Further investigation of the molecular mechanism behind this phenotype and its possible consequences for the overall phenotype of L. monocytogenes are under way. IMPORTANCE: SigB is the most important stress gene regulator in L. monocytogenes and other Gram-positive bacteria. Its increased expression during stationary phase results in resistance to multiple stresses. However, despite its important role in general stress resistance, its expression is detrimental for the cell in the presence of oxidative stress, as it promotes hypersensitivity against hydrogen peroxide. This peculiar phenotype is an important element of the physiology of L. monocytogenes, and it might help us explain the behavior of this organism in environments where oxidative stress is present.


Assuntos
Proteínas de Bactérias/genética , Peróxido de Hidrogênio/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Fator sigma/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Estresse Oxidativo , Fator sigma/metabolismo
2.
Appl Environ Microbiol ; 82(13): 4017-4027, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129969

RESUMO

UNLABELLED: Listeria monocytogenes senses blue light via the flavin mononucleotide-containing sensory protein Lmo0799, leading to activation of the general stress response sigma factor SigB (σ(B)). In this study, we investigated the physiological response of this foodborne pathogen to blue light. We show that blue light (460 to 470 nm) doses of 1.5 to 2 mW cm(-2) cause inhibition of growth on agar-based and liquid culture media. The inhibitory effects are dependent on cell density, with reduced effects evident when high cell numbers are present. The addition of 20 mM dimethylthiourea, a scavenger of reactive oxygen species, or catalase to the medium reverses the inhibitory effects of blue light, suggesting that growth inhibition is mediated by the formation of reactive oxygen species. A mutant strain lacking σ(B) (ΔsigB) was found to be less inhibited by blue light than the wild type, likely indicating the energetic cost of deploying the general stress response. When a lethal dose of light (8 mW cm(-2)) was applied to cells, the ΔsigB mutant displayed a marked increase in sensitivity to light compared to the wild type. To investigate the role of the blue-light sensor Lmo0799, mutants were constructed that either had a deletion of the gene (Δlmo0799) or alteration in a conserved cysteine residue at position 56, which is predicted to play a pivotal role in the photocycle of the protein (lmo0799 C56A). Both mutants displayed phenotypes similar to the ΔsigB mutant in the presence of blue light, providing genetic evidence that residue 56 is critical for light sensing in L. monocytogenes Taken together, these results demonstrate that L. monocytogenes is inhibited by blue light in a manner that depends on reactive oxygen species, and they demonstrate clear light-dependent phenotypes associated with σ(B) and the blue-light sensor Lmo0799. IMPORTANCE: Listeria monocytogenes is a bacterial foodborne pathogen that can cause life-threatening infections in humans. It is known to be able to sense and respond to visible light. In this study, we examine the effects of blue light on the growth and survival of this pathogen. We show that growth can be inhibited at comparatively low doses of blue light, and that at higher doses, L. monocytogenes cells are killed. We present evidence suggesting that blue light inhibits this organism by causing the production of reactive oxygen species, such as hydrogen peroxide. We help clarify the mechanism of light sensing by constructing a "blind" version of the blue-light sensor protein. Finally, we show that activation of the general stress response by light has a negative effect on growth, probably because cellular resources are diverted into protective mechanisms rather than growth.


Assuntos
Antibacterianos/toxicidade , Flavoproteínas/metabolismo , Luz , Listeria monocytogenes/fisiologia , Listeria monocytogenes/efeitos da radiação , Espécies Reativas de Oxigênio/toxicidade , Fator sigma/metabolismo , Meios de Cultura/química , Flavoproteínas/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/crescimento & desenvolvimento , Mutação Puntual , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...