Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3261, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828866

RESUMO

Digital image correlation, deflectometry and digital holography are some of the full-field optical measurement techniques that have matured in recent years. Their use in vibroacoustic applications is gaining attention and there is a need for cataloging their performance in order to provide, to a broad community of users and potential future users, quantitative and qualitative evaluations of these three approaches. This paper presents an experimental comparison of the three optical methods in the context of vibration measurements, along with classical reference measurements provided by an accelerometer and a laser Doppler vibrometer. The study is carried out on two mechanical structures exhibiting various vibration responses when submitted to an impact.

2.
J Acoust Soc Am ; 146(6): 4851, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893759

RESUMO

An acoustic imaging algorithm is proposed herein for transient noise source time reconstruction. Time domain formulations are not well suited for acoustic imaging because of the size of the resulting system to be inversed. Based on the phase coherence principle widely used in ultrasound imaging and image processing, the first step of the algorithm consists in proposing the phase coherence metric used to reject pixels that are unlikely to contribute to the radiated sound field. This translates in a reduction of the domain size and ill-posedness of the problem. In the second step, the inverse problem is solved using the Tikhonov regularization and the generalized cross-validation to extract the vibration field on the imaging domain. Two test cases are considered: a simulated baffled piston and a panel submitted to a mechanical impact in anechoic conditions. The actual vibration field of the panel is measured with an optical technique for reference. In both numerical and experimental cases, the reconstructed vibration field using the proposed approach compares well with their respective reference. The results confirm that transient excitations can be localized and quantified with the proposed approach, in contrast with the classical time-domain beamforming that dramatically overestimates its magnitude.

3.
Proc Natl Acad Sci U S A ; 111(31): E3167-76, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049378

RESUMO

Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on production practices. Questions have been raised as to how greenhouse gas (GHG) emissions from the life cycle of shale gas production and use compares with that of conventionally produced natural gas or other fuel sources such as coal. Recent literature has come to different conclusions on this point, largely due to differing assumptions, comparison baselines, and system boundaries. Through a meta-analytical procedure we call harmonization, we develop robust, analytically consistent, and updated comparisons of estimates of life cycle GHG emissions for electricity produced from shale gas, conventionally produced natural gas, and coal. On a per-unit electrical output basis, harmonization reveals that median estimates of GHG emissions from shale gas-generated electricity are similar to those for conventional natural gas, with both approximately half that of the central tendency of coal. Sensitivity analysis on the harmonized estimates indicates that assumptions regarding liquids unloading and estimated ultimate recovery (EUR) of wells have the greatest influence on life cycle GHG emissions, whereby shale gas life cycle GHG emissions could approach the range of best-performing coal-fired generation under certain scenarios. Despite clarification of published estimates through harmonization, these initial assessments should be confirmed through methane emissions measurements at components and in the atmosphere and through better characterization of EUR and practices.


Assuntos
Poluição do Ar/análise , Eletricidade , Fontes Geradoras de Energia , Sedimentos Geológicos/química , Efeito Estufa , Gás Natural/análise , Dióxido de Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...