Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(50): 60489-60497, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34881569

RESUMO

Electrically conductive composite materials are highlighted as a potential tech path toward future flexible devices for wearable health technologies. To be commercially viable, these materials must not only be mechanically soft, highly sensitive to deformation, and report a sustainable signal but also utilize manufacturing methods that facilitate large-scale production. An ideal candidate for these envisioned technologies is the viscous, electromechanically sensitive composite material g-putty. Inks based on g-putty here are shown to transform a commercial polymer foam into a sensitive strain sensing material through a simple, scalable soaking procedure. Foam composites reported here have sensitives as high as ∼20 in terms of compressive strain and ∼0.4 kPa-1 with respect to applied compressive stress; both values being comparable to the parent g-putty material. Through g-putty's self-adhering nature, the foams used acted as an elastic scaffolding that aided in overcoming many of the hysteresis effects associated with g-putty without the need for further encapsulation methods. From this, these composite foams were demonstrated to have a sustainable signal that allowed for effective impact and vital sign sensing.

2.
Small ; 17(23): e2006542, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33856108

RESUMO

While nanocomposite electromechanical sensors are expected to display reasonable conductivity and high sensitivity, little consideration is given to eliminating hysteresis and strain rate/frequency dependence from their response. For example, while G-putty, a composite of graphene and polysiloxane, has very high electromechanical sensitivity, its extreme viscoelasticity renders it completely unsuitable for real sensors due to hysteretic and rate-/frequency-dependent effects. Here it is shown that G-putty can be converted to an ink and printed into patterned thin films on elastic substrates. A partial graphene-polymer phase segregation during printing increases the thin-film conductivity by ×106 compared to bulk, while the mechanical effects of the substrate largely suppress hysteresis and completely remove strain rate and frequency dependence. This allows the fabrication of practical, high-gauge-factor, wearable sensors for pulse measurements as well as patterned sensors for low-signal vibration sensing.

3.
ACS Nano ; 13(6): 6845-6855, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31199128

RESUMO

Nanocomposite strain sensors, particularly those consisting of polymer-graphene composites, are increasingly common and are of great interest in the area of wearable sensors. In such sensors, application of strain yields an increase in resistance due to the effect of deformation on interparticle junctions. Typically, widening of interparticle separation is thought to increase the junction resistance by reducing the probability of tunnelling between conducting particles. However, an alternative approach would be to use piezoresistive fillers, where an applied strain modifies the intrinsic filler resistance and so the overall composite resistance. Such an approach would broaden sensing capabilities, as using negative piezoresistive fillers could yield strain-induced resistance reductions rather than the usual resistance increases. Here, we introduce nanocomposites based on polyethylene oxide (PEO) filled with MoS2 nanosheets. Doping of the MoS2 by the PEO yields nanocomposites which are conductive enough to act as sensors, while efficient stress transfer leads to nanosheet deformation in response to an external strain. The intrinsic negative piezoresistance of the MoS2 leads to a reduction of the composite resistance on the application of small tensile strains. However, at higher strain the resistance grows due to increases in junction resistance. MoS2-PEO composite gauge factors are approximately -25 but fall to -12 for WS2-PEO composites and roughly -2 for PEO filled with MoSe2 or WSe2. We develop a simple model, which describes all these observations. Finally, we show that these composites can be used as dynamic strain sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...