Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(11): 16563-16571, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154216

RESUMO

This paper describes the detailed characterization of a novel InP-Si3N4 dual laser module with results revealing relative intensity noise (RIN) as low as -165 dB/Hz and wide wavelength tunability (100 nm). The hybrid coupled laser is deployed in an unamplified 28 GBd 8 level pulse amplitude modulation (PAM) short-reach data center (DC) transmission system. System performance, which is experimentally evaluated in terms of received signal bit error ratio (BER), demonstrates the ability of the proposed laser module to support PAM-8 transmission across a 100 nm tuning range with less than 1 dB variance in receiver sensitivity over the operating wavelength range. Comparative performance studies not only indicate that the proposed source can outperform a commercial external cavity laser (ECL) in an intensity modulation/direct detection (IM/DD) link but also highlight the critical impact of RIN in the design of advanced modulation short-reach systems.

2.
Appl Opt ; 57(22): E89-E100, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117926

RESUMO

We provide numerical verification of a feed-forward, heterodyne-based phase noise reduction scheme using single-sideband modulation that obviates the need for optical filtering at the output. The main benefit of a feed-forward heterodyne linewidth reduction scheme is the simultaneous reduction of the linewidth of all modes of a mode-locked laser (MLL) to that of a narrow-linewidth single-wavelength laser. At the heart of our simulator is an MLL model of reduced complexity. Importantly, the main issue being treated is the jitter of MLLs and we show how to create numerical waveforms that mimic the random-walk nature of timing jitter of pulses from MLLs. Thus, the model does not need to solve stochastic differential equations that describe the MLL dynamics, and the model calculates self-consistently the line-broadening of the modes of the MLL and shows good agreement with both the optical linewidth and jitter. The linewidth broadening of the MLL modes are calculated after the phase noise reduction scheme and we confirm that the phase noise contribution from the timing jitter still remains. Finally, we use the MLL model and phase noise reduction simulator within an optical communications system simulator and show that the phase noise reduction technique could enable MLLs as optical carriers for higher-order modulation formats, such as 16-state and 64-state quadrature amplitude modulation.

3.
Opt Lett ; 42(19): 4000-4003, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957182

RESUMO

We report on the frequency noise reduction performance of a feed-forward technique. The Letter is based on frequency noise measurements that allow the spectral response of the feed-forward phase noise correction to be determined. The main limitation to the noise compensation is attributed to the local oscillator flicker noise and the noise added by the optoelectronic loop elements. The technique is applied to an actively mode-locked laser diode demonstrating, at the output of the system, an optical frequency comb source with 14 comb lines reduced to sub-kilohertz intrinsic linewidth.

4.
Opt Lett ; 41(24): 5676-5679, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973487

RESUMO

The optical outputs of single-section quantum-dash and quantum-dot mode-locked lasers (MLLs) are well known to exhibit strong group velocity dispersion. Based on careful measurements of the spectral phase of the pulses from these MLLs, we confirm that the difference in group delay between the modes at either end of the MLL spectrum equals the cavity round-trip time. This observation allows us to deduce an empirical formula relating the accumulated dispersion of the output pulse to the spectral extent and free-spectral range of the MLL. We find excellent agreement with previously reported dispersion measurements of both quantum-dash and quantum-dot MLLs over a wide range of operating conditions.

5.
Opt Express ; 24(11): 11749-61, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410100

RESUMO

We study and experimentally validate the vector theory of four-wave mixing (FWM) in semiconductor optical amplifiers (SOA). We use the vector theory of FWM to design a polarization insensitive all-optical wavelength converter, suitable for advanced modulation formats, using non-degenerate FWM in SOAs and parallelly polarized pumps. We demonstrate the wavelength conversion of polarization-multiplexed (PM)-QPSK, PM-16QAM and a Nyquist WDM super-channel modulated with PM-QPSK signals at a baud rate of 12.5 GBaud, with total data rates of 50 Gbps, 100 Gbps and 200 Gbps respectively.

6.
Appl Opt ; 55(7): 1658-62, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974626

RESUMO

We show through simulations how polarization demultiplexing of dual-polarization, intensity modulated signals of arbitrary format can be performed by only using the information in Stokes space. The technique would be applicable for short-range communications within data centers.

7.
Appl Opt ; 54(11): 3398-406, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967330

RESUMO

We generate random numerical waveforms that mimic laser phase noise incorporating laser-resonance enhanced phase noise. The phase noise waveforms are employed in system simulators to estimate the resulting bit error rate penalties for differential quadrature phase shift keying signals. The results show that baudrate dependence of the bit error rate performance arises from laser-resonance phase noise. In addition, we show with supporting experimental results that the laser-resonance phase noise on the pumps in four-wave-mixing-based wavelength converters is responsible for large bit error rate floors.

8.
Appl Opt ; 53(5): 830-5, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663260

RESUMO

We employ simple analytical models to construct the entire frequency-modulation (FM)-noise spectrum of tunable semiconductor lasers. Many contributions to the laser FM noise can be clearly identified from the FM-noise spectrum, such as standard Weiner FM noise incorporating laser relaxation oscillation, excess FM noise due to thermal fluctuations, and carrier-induced refractive index fluctuations from stochastic carrier generation in the passive tuning sections. The contribution of the latter effect is identified by noting a correlation between part of the FM-noise spectrum with the FM-modulation response of the passive sections. We pay particular attention to the case of widely tunable lasers with three independent tuning sections, mainly the sampled-grating distributed Bragg reflector laser, and compare with that of a distributed feedback laser. The theoretical model is confirmed with experimental measurements, with the calculations of the important phase-error variance demonstrating excellent agreement.

9.
Opt Lett ; 35(13): 2278-80, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596219

RESUMO

We highlight the importance of the delay arising from optical filters in slow-light-based microwave phase shifting systems. We calculate the filter delay numerically from the measured amplitude response by using the well-known Kramers-Kronig relations. The complex filter transmission response is then incorporated within a numerical model with which we explain phase shifting results obtained from experiments employing semiconductor optical amplifiers as slow light elements.

10.
Opt Lett ; 34(13): 1940-2, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19571959

RESUMO

We report an experimental characterization of additive noise from a single-stage phase shifter based on slow and fast light propagation in a bulk semiconductor optical amplifier. We examine the influence of redshifted sideband suppression and optical input power on the signal-to-noise ratio (SNR) of the detected signal. We conclude that in spite of the up to a 6 dB reduction in the detected noise, the SNR remains dominated by the decrease in the detected signal power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...