Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 3861-3871, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293747

RESUMO

2-Thiouridine (s2U) is a nucleobase modification that confers enhanced efficiency and fidelity both on modern tRNA codon translation and on nonenzymatic and ribozyme-catalyzed RNA copying. We have discovered an unusual base pair between two 2-thiouridines that stabilizes an RNA duplex to a degree that is comparable to that of a native A:U base pair. High-resolution crystal structures indicate similar base-pairing geometry and stacking interactions in duplexes containing s2U:s2U compared to those with U:U pairs. Notably, the C═O···H-N hydrogen bond in the U:U pair is replaced with a C═S···H-N hydrogen bond in the s2U:s2U base pair. The thermodynamic stability of the s2U:s2U base pair suggested that this self-pairing might lead to an increased error frequency during nonenzymatic RNA copying. However, competition experiments show that s2U:s2U base-pairing induces only a low level of misincorporation during nonenzymatic RNA template copying because the correct A:s2U base pair outcompetes the slightly weaker s2U:s2U base pair. In addition, even if an s2U is incorrectly incorporated, the addition of the next base is greatly hindered. This strong stalling effect would further increase the effective fidelity of nonenzymatic RNA copying with s2U. Our findings suggest that s2U may enhance the rate and extent of nonenzymatic copying with only a minimal cost in fidelity.


Assuntos
RNA Catalítico , RNA , Tiouridina/análogos & derivados , RNA/química , Pareamento de Bases , Tiouridina/química , RNA Catalítico/química , Conformação de Ácido Nucleico
2.
Chembiochem ; 25(6): e202300870, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38179859

RESUMO

Tandem oligonucleotide synthesis (TOS) is an attractive strategy to increase automated oligonucleotide synthesis efficiency. TOS is accomplished via the introduction of an immolative linker within a single sequence composed of multiple oligonucleotide fragments. Here, we report the use of a commercially available building block, typically utilized for the chemical phosphorylation of DNA/RNA oligomers, to perform TOS. We show that the 2,2'-sulfonyldiethylene linker is efficiently self-immolated during the standard deprotection of DNA and RNA and presents itself as a generalizable methodology for nucleic acid TOS. Furthermore, we show the utility of this methodology by assembling a model siRNA construct, and showcase a template-directed ligation pathway to incorporate phosphoramidate or pyrophosphate linkages within DNA oligomers.


Assuntos
Oligonucleotídeos , RNA , RNA/metabolismo , Oligonucleotídeos/metabolismo , DNA , RNA Interferente Pequeno
3.
J Am Chem Soc ; 143(40): 16589-16598, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597506

RESUMO

Self-assembling single-chain amphiphiles available in the prebiotic environment likely played a fundamental role in the advent of primitive cell cycles. However, the instability of prebiotic fatty acid-based membranes to temperature and pH seems to suggest that primitive cells could only host prebiotically relevant processes in a narrow range of nonfluctuating environmental conditions. Here we propose that membrane phase transitions, driven by environmental fluctuations, enabled the generation of daughter protocells with reshuffled content. A reversible membrane-to-oil phase transition accounts for the dissolution of fatty acid-based vesicles at high temperatures and the concomitant release of protocellular content. At low temperatures, fatty acid bilayers reassemble and encapsulate reshuffled material in a new cohort of protocells. Notably, we find that our disassembly/reassembly cycle drives the emergence of functional RNA-containing primitive cells from parent nonfunctional compartments. Thus, by exploiting the intrinsic instability of prebiotic fatty acid vesicles, our results point at an environmentally driven tunable prebiotic process, which supports the release and reshuffling of oligonucleotides and membrane components, potentially leading to a new generation of protocells with superior traits. In the absence of protocellular transport machinery, the environmentally driven disassembly/assembly cycle proposed herein would have plausibly supported protocellular content reshuffling transmitted to primitive cell progeny, hinting at a potential mechanism important to initiate Darwinian evolution of early life forms.


Assuntos
Células Artificiais
4.
J Phys Chem Lett ; 12(28): 6707-6713, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34260253

RESUMO

Substitution of exocyclic oxygen with sulfur was shown to substantially influence the properties of RNA/DNA bases, which are crucial for prebiotic chemistry and photodynamic therapies. Upon UV irradiation, thionucleobases were shown to efficiently populate triplet excited states and can be involved in characteristic photochemistry or generation of singlet oxygen. Here, we show that the photochemistry of a thionucleobase can be considerably modified in a nucleoside, that is, by the presence of ribose. Our transient absorption spectroscopy experiments demonstrate that thiocytosine exhibits 5 times longer excited-state lifetime and different excited-state absorption features than thiocytidine. On the basis of accurate quantum chemical simulations, we assign these differences to the dominant population of a shorter-lived triplet nπ* state in the nucleoside and longer-lived triplet ππ* states in the nucleobase. This explains the distinctive photoanomerziation of thiocytidine and indicates that the nucleoside will be a less efficient phototherapeutic agent with regard to singlet oxygen generation.


Assuntos
Nucleosídeos/química , Processos Fotoquímicos , Ribose/química , Enxofre/química
5.
J Am Chem Soc ; 143(9): 3267-3279, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33636080

RESUMO

Recent advances in prebiotic chemistry are beginning to outline plausible pathways for the synthesis of the canonical ribonucleotides and their assembly into oligoribonucleotides. However, these reaction pathways suggest that many noncanonical nucleotides are likely to have been generated alongside the standard ribonucleotides. Thus, the oligomerization of prebiotically synthesized nucleotides is likely to have led to a highly heterogeneous collection of oligonucleotides comprised of a wide range of types of nucleotides connected by a variety of backbone linkages. How then did relatively homogeneous RNA emerge from this primordial heterogeneity? Here we focus on nonenzymatic template-directed primer extension as a process that would have strongly enriched for homogeneous RNA over the course of multiple cycles of replication. We review the effects on copying the kinetics of nucleotides with altered nucleobase and sugar moieties, when they are present as activated monomers and when they are incorporated into primer and template oligonucleotides. We also discuss three variations in backbone connectivity, all of which are nonheritable and regenerate native RNA upon being copied. The kinetic superiority of RNA synthesis suggests that nonenzymatic copying served as a chemical selection mechanism that allowed relatively homogeneous RNA to emerge from a complex mixture of prebiotically synthesized nucleotides and oligonucleotides.


Assuntos
Evolução Molecular , RNA/química , Nucleotídeos/química , RNA/genética , Moldes Genéticos
6.
Nucleic Acids Res ; 49(5): 2435-2449, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577685

RESUMO

We recently reported the synthesis of 2'-fluorinated Northern-methanocarbacyclic (2'-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2'-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2'-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5' phosphate, suggesting that the 2'-F-NMC is a poor substrate for 5' kinases. In mice, the 2'-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2'-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5'-phosphate mimic 5'-(E)-vinylphosphonate was attached to the 2'-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2'-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2'-F-NMC. Finally, the 5'-triphosphate of 2'-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.


Assuntos
Nucleotídeos/química , Interferência de RNA , RNA Interferente Pequeno/química , Animais , Proteínas Argonautas/química , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA Polimerase gama/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Camundongos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Compostos Organofosforados/síntese química , Compostos Organofosforados/química , Pré-Albumina/genética , Nucleotídeos de Pirimidina/síntese química , Nucleotídeos de Pirimidina/química , Uridina/análogos & derivados
7.
J Am Chem Soc ; 142(37): 15961-15965, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32820909

RESUMO

Our current understanding of the chemistry of the primordial genetic material is fragmentary at best. The chemical replication of oligonucleotides long enough to perform catalytic functions is particularly problematic because of the low efficiency of nonenzymatic template copying. Here we show that this problem can be circumvented by assembling a functional ribozyme by the templated ligation of short oligonucleotides. However, this approach creates a new problem because the splint oligonucleotides used to drive ribozyme assembly strongly inhibit the resulting ribozyme. We explored three approaches to the design of splint oligonucleotides that enable efficient ligation but which allow the assembled ribozyme to remain active. DNA splints, splints with G:U wobble pairs, and splints with G to I (Inosine) substitutions all allowed for the efficient assembly of an active ribozyme ligase. Our work demonstrates the possibility of a transition from nonenzymatic ligation to enzymatic ligation and reveals the importance of avoiding ribozyme inhibition by complementary oligonucleotides.


Assuntos
Ligases/metabolismo , Oligonucleotídeos/metabolismo , RNA Catalítico/metabolismo , Ligases/química , Oligonucleotídeos/química , RNA Catalítico/química
8.
Angew Chem Int Ed Engl ; 59(36): 15682-15687, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32558121

RESUMO

The non-enzymatic replication of the primordial genetic material is thought to have enabled the evolution of early forms of RNA-based life. However, the replication of oligonucleotides long enough to encode catalytic functions is problematic due to the low efficiency of template copying with mononucleotides. We show that template-directed ligation can assemble long RNAs from shorter oligonucleotides, which would be easier to replicate. The rate of ligation can be greatly enhanced by employing a 3'-amino group at the 3'-end of each oligonucleotide, in combination with an N-alkyl imidazole organocatalyst. These modifications enable the copying of RNA templates by the multistep ligation of tetranucleotide building blocks, as well as the assembly of long oligonucleotides using short splint oligonucleotides. We also demonstrate the formation of long oligonucleotides inside model prebiotic vesicles, which suggests a potential route to the assembly of artificial cells capable of evolution.


Assuntos
RNA/genética , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , RNA/química , Moldes Genéticos
9.
J Am Chem Soc ; 142(5): 2317-2326, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31913615

RESUMO

The abiotic synthesis of ribonucleotides is thought to have been an essential step toward the emergence of the RNA world. However, it is likely that the prebiotic synthesis of ribonucleotides was accompanied by the simultaneous synthesis of arabinonucleotides, 2'-deoxyribonucleotides, and other variations on the canonical nucleotides. In order to understand how relatively homogeneous RNA could have emerged from such complex mixtures, we have examined the properties of arabinonucleotides and 2'-deoxyribonucleotides in nonenzymatic template-directed primer extension reactions. We show that nonenzymatic primer extension with activated arabinonucleotides is much less efficient than with activated ribonucleotides, and furthermore that once an arabinonucleotide is incorporated, continued primer extension is strongly inhibited. As previously shown, 2'-deoxyribonucleotides are also less efficiently incorporated in primer extension reactions, but the difference is more modest. Experiments with mixtures of nucleotides suggest that the coexistence of ribo- and arabinonucleotides does not impede the copying of RNA templates. Moreover, chimeric oligoribonucleotides containing 2'-deoxy- or arabinonucleotides are effective templates for RNA synthesis. We propose that the initial genetic polymers were random sequence chimeric oligonucleotides formed by untemplated polymerization, but that template copying chemistry favored RNA synthesis; multiple rounds of replication may have led to pools of oligomers composed mainly of RNA.


Assuntos
Arabinonucleotídeos/química , Desoxirribonucleotídeos/química , Modelos Químicos , RNA/química , Ribonucleotídeos/química , Polimerização
10.
Bio Protoc ; 10(17): e3734, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659395

RESUMO

The RNA world hypothesis describes a scenario where early life forms relied on RNA to govern both inheritance and catalyze useful chemical reactions. Prior to the emergence of enzymes capable of replicating the RNA genome, a nonenzymatic replication process would have been necessary to initiate Darwinian Evolution. However, the one-pot nonenzymatic RNA chemical copying of templates with mixed-sequences is insufficient to generate strand products long enough to encode useful function. The use of alternate (RNA-like) genetic polymers may overcome hurdles associated with RNA copying, and further our understanding of nonenzymatic copying chemistry. This protocol describes the nonenzymatic copying of RNA templates into N3'→P5' phosphoramidate DNA (3'-NP-DNA). We describe, in detail, the synthesis of 3'-amino-2',3'-dideoxyribonucleotide monomers activated with 2-aminoimidazole (3'-NH2-2AIpddN), and their use in template-directed polymerization.

11.
Elife ; 82019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31702557

RESUMO

Non-enzymatic RNA self-replication is integral to the emergence of the 'RNA World'. Despite considerable progress in non-enzymatic template copying, demonstrating a full replication cycle remains challenging due to the difficulty of separating the strands of the product duplex. Here, we report a prebiotically plausible approach to strand displacement synthesis in which short 'invader' oligonucleotides unwind an RNA duplex through a toehold/branch migration mechanism, allowing non-enzymatic primer extension on a template that was previously occupied by its complementary strand. Kinetic studies of single-step reactions suggest that following invader binding, branch migration results in a 2:3 partition of the template between open and closed states. Finally, we demonstrate continued primer extension with strand displacement by employing activated 3'-aminonucleotides, a more reactive proxy for ribonucleotides. Our study suggests that complete cycles of non-enzymatic replication of the primordial genetic material may have been facilitated by short RNA oligonucleotides.


Assuntos
RNA/metabolismo , Sequência de Bases , Fluorescência , Magnésio/farmacologia , Moldes Genéticos
12.
J Am Chem Soc ; 141(45): 18104-18112, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31651170

RESUMO

Achieving multiple cycles of RNA replication within a model protocell would be a critical step toward demonstrating a path from prebiotic chemistry to cellular biology. Any model for early life based on an "RNA world" must account for RNA strand cleavage and hydrolysis, which would degrade primitive genetic information and lead to an accumulation of truncated, phosphate-terminated strands. We show here that cleavage of the phosphodiester backbone is not an end point for RNA replication. Instead, 3'-phosphate-terminated RNA strands can participate in template-directed copying reactions with activated ribonucleotide monomers. These reactions form a pyrophosphate linkage, the stability of which we have characterized in the context of RNA copying chemistry. The presence of free magnesium cations results in cleavage of the pyrophosphate bond within minutes. However, we found that the pyrophosphate bond is relatively stable within an RNA duplex and in the presence of chelated magnesium. We show that, under these conditions, pyrophosphate-linked RNA can act as a template for the polymerization of ribonucleotides into canonical 3'-5' phosphodiester-linked RNA. We suggest that primer extension of 3'-phosphate-terminated RNA followed by template-directed copying represents a plausible nonenzymatic pathway for the salvage and recovery of genetic information following strand cleavage.


Assuntos
Difosfatos/química , RNA/química , Meia-Vida , Hidrólise , Cinética , Clivagem do RNA
13.
Nucleic Acids Res ; 47(17): 8941-8949, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31428779

RESUMO

Genetic polymers that could plausibly govern life in the universe might inhabit a broad swath of chemical space. A subset of these genetic systems can exchange information with RNA and DNA and could therefore form the basis for model protocells in the laboratory. N3'→P5' phosphoramidate (NP) DNA is defined by a conservative linkage substitution and has shown promise as a protocellular genetic material, but much remains unknown about its functionality and fidelity due to limited enzymatic tools. Conveniently, we find widespread NP-DNA-dependent DNA polymerase activity among reverse transcriptases, an observation consistent with structural studies of the RNA-like conformation of NP-DNA duplexes. Here, we analyze the consequences of this unnatural template linkage on the kinetics and fidelity of DNA polymerization activity catalyzed by wild-type and variant reverse transcriptases. Template-associated deficits in kinetics and fidelity suggest that even highly conservative template modifications give rise to error-prone DNA polymerase activity. Enzymatic copying of NP-DNA sequences is nevertheless an important step toward the future study and engineering of this synthetic genetic polymer.


Assuntos
Amidas/química , Oligonucleotídeos/química , Ácidos Fosfóricos/química , DNA Polimerase Dirigida por RNA/metabolismo , Sequência de Bases , Dicroísmo Circular , DNA/química , Estrutura Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/biossíntese , Polimerização , RNA/química , Moldes Genéticos
14.
J Am Chem Soc ; 141(26): 10481-10488, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180644

RESUMO

Efficiently copying mixed-sequence oligonucleotide templates nonenzymatically is a long-standing problem both with respect to the origin of life, and with regard to bottom up efforts to synthesize artificial living systems. Here we report an efficient and sequence-general nonenzymatic process in which RNA templates direct the synthesis of a complementary strand composed of N3'→P5' phosphoramidate DNA (3'-NP-DNA) using 3'-amino-2',3'-dideoxyribonucleotides activated with 2-aminoimidazole. Using only the four canonical nucleobases (A, G, C, and T) of modern DNA, we demonstrate the chemical copying of a variety of mixed-sequence RNA templates, both in solution and within model protocells, into complementary 3'-NP-DNA strands. Templates up to 25 nucleotides long were chemically transcribed with an average stepwise yield of 96-97%. The nonenzymatic template-directed generation of primer extension products long enough to encode active ribozymes and/or aptamers inside model protocells suggests possible routes to the synthesis of evolving cellular systems.


Assuntos
Células Artificiais/química , DNA/síntese química , DNA/química , Modelos Moleculares
15.
Proc Natl Acad Sci U S A ; 115(52): 13318-13323, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30509978

RESUMO

The emergence of primordial RNA-based life would have required the abiotic synthesis of nucleotides, and their participation in nonenzymatic RNA replication. Although considerable progress has been made toward potentially prebiotic syntheses of the pyrimidine nucleotides (C and U) and their 2-thio variants, efficient routes to the canonical purine nucleotides (A and G) remain elusive. Reported syntheses are low yielding and generate a large number of undesired side products. Recently, a potentially prebiotic pathway to 8-oxo-adenosine and 8-oxo-inosine has been demonstrated, raising the question of the suitability of the 8-oxo-purines as substrates for prebiotic RNA replication. Here we show that the 8-oxo-purine nucleotides are poor substrates for nonenzymatic RNA primer extension, both as activated monomers and when present in the template strand; their presence at the end of a primer also strongly reduces the rate and fidelity of primer extension. To provide a proper comparison with 8-oxo-inosine, we also examined primer extension reactions with inosine, and found that inosine exhibits surprisingly rapid and accurate nonenzymatic RNA copying. We propose that inosine, which can be derived from adenosine by deamination, could have acted as a surrogate for G in the earliest stages of the emergence of life.


Assuntos
Inosina/metabolismo , Inosina/fisiologia , RNA/genética , Inosina/química , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleotídeos/química , Origem da Vida , Nucleotídeos de Purina/metabolismo , Purinas/química , Purinas/metabolismo , RNA/metabolismo
16.
Org Biomol Chem ; 16(46): 9053-9058, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30430154

RESUMO

O 6-Alkylguanine DNA alkyltransferases (AGTs) are proteins found in most organisms whose role is to remove alkylation damage from the O6- and O4-positions of 2'-deoxyguanosine (dG) and thymidine (dT), respectively. Variations in active site residues between AGTs from different organisms leads to differences in repair proficiency: The human variant (hAGT) has a proclivity for removal of alkyl groups at the O6-position of guanine and the E. coli OGT protein has activity towards the O4-position of thymine. A chimeric protein (hOGT) that our laboratory has engineered with twenty of the active site residues mutated in hAGT to those found in OGT, exhibited activity towards a broader range of substrates relative to native OGT. Among the substrates that the hOGT protein was found to act upon was interstrand cross-linked DNA connected by an alkylene linkage at the O6-position of dG to the complementary strand. In the present study the activity of hOGT towards DNA containing alkylene intrastrand cross-links (IaCL) at the O6- and O4-positions respectively of dG and dT, which lack a phosphodiester linkage between the connected residues, was evaluated. The hOGT protein exhibited proficiency at removal of an alkylene linkage at the O6-atom of dG but the O4-position of dT was refractory to protein activity. The activity of the chimeric hOGT protein towards these IaCLs to prepare well defined DNA-protein cross-linked conjugates will enable mechanistic and high resolution structural studies to address the differences observed in the repair adeptness of O4-alkylated dT by the OGT protein relative to other AGT variants.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferases/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , Engenharia de Proteínas/métodos , Domínio Catalítico , Reparo do DNA , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Especificidade por Substrato
17.
Angew Chem Int Ed Engl ; 57(31): 9844-9848, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29939457

RESUMO

Non-enzymatic RNA replication may have been one of the processes involved in the appearance of life on Earth. Attempts to recreate this process in a laboratory setting have not been successful thus far, highlighting a critical need for finding prebiotic conditions that increase the rate and the yield. Now a highly parallel assay for template directed RNA synthesis is presented that relies on the intrinsic fluorescence of a 2-aminopurine modified G-quadruplex. The application of the assay to examine the combined influence of multiple variables including pH, divalent metal concentrations and ribonucleotide concentrations on the copying of RNA sequences is demonstrated. The assay enables a direct survey of physical and chemical conditions, potentially prebiotic, which could enable the chemical replication of RNA.


Assuntos
Corantes Fluorescentes/química , RNA/genética , Sequência de Bases , Quadruplex G , RNA/química , Espectrometria de Fluorescência
18.
J Am Chem Soc ; 140(15): 5171-5178, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29608310

RESUMO

The chemical replication of RNA inside fatty acid vesicles is a plausible step in the emergence of cellular life. On the primitive Earth, simple protocells with the ability to import nucleotides and short oligomers from their environment could potentially have replicated and retained larger genomic RNA oligonucleotides within a spatially defined compartment. We have previously shown that short 5'-phosphoroimidazolide-activated "helper" RNA oligomers enable the nonenzymatic copying of mixed-sequence templates in solution, using 5'-phosphoroimidazolide-activated mononucleotides. Here, we report that citrate-chelated Mg2+, a catalyst of nonenzymatic primer extension, enhances fatty acid membrane permeability to such short RNA oligomers up to the size of tetramers, without disrupting vesicle membranes. In addition, selective permeability of short, but not long, oligomers can be further enhanced by elevating the temperature. The ability to increase the permeability of fatty acid membranes to short oligonucleotides allows for the nonenzymatic copying of RNA templates containing all four nucleotides inside vesicles, bringing us one step closer to the goal of building a protocell capable of Darwinian evolution.


Assuntos
Ácido Cítrico/química , Ácidos Graxos/química , Magnésio/química , RNA/química , Sequência de Bases , Temperatura
19.
Chembiochem ; 19(6): 575-582, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29243336

RESUMO

Oligonucleotides containing various adducts, including ethyl, benzyl, 4-hydroxybutyl and 7-hydroxyheptyl groups, at the O4 atom of 5-fluoro-O4 -alkyl-2'-deoxyuridine were prepared by solid-phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5-fluoro-2'-deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B-form DNA structure. O6 -Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5-fluoro-O4 -benzyl-2'-deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4 -ethyl and benzyl adducts of 5-fluoro-2-deoxyuridine. Computational assessment of N1-methyl analogues of the O4 -alkylated nucleobases revealed that the C5-fluorine modification had an influence on reducing the electron density of the O4 -Cα bond, relative to thymine (C5-methyl) and uracil (C5-hydrogen). These results reveal the positive influence of the C5-fluorine atom on the repair of larger O4 -alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.


Assuntos
Desoxiuridina/metabolismo , Flúor/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilação , Humanos , Conformação Molecular , Teoria Quântica
20.
Molecules ; 22(11)2017 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-29137116

RESUMO

O6-Alkylguanine-DNA alkyltransferases (AGTs) are proteins responsible for the removal of mutagenic alkyl adducts at the O6-atom of guanine and O4-atom of thymine. In the current study we set out to understand the role of the Ser134 residue in the Escherichia coli AGT variant OGT on substrate discrimination. The S134P mutation in OGT increased the ability of the protein to repair both O6-adducts of guanine and O4-adducts of thymine. However, the S134P variant was unable, like wild-type OGT, to repair an interstrand cross-link (ICL) bridging two O6-atoms of guanine in a DNA duplex. When compared to the human AGT protein (hAGT), the S134P OGT variant displayed reduced activity towards O6-alkylation but a much broader substrate range for O4-alkylation damage reversal. The role of residue 134 in OGT is similar to its function in the human homolog, where Pro140 is crucial in conferring on hAGT the capability to repair large adducts at the O6-position of guanine. Finally, a method to generate a covalent conjugate between hAGT and a model nucleoside using a single-stranded oligonucleotide substrate is demonstrated.


Assuntos
Substituição de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Nucleosídeos/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Conformação Molecular , Mutação , Nucleosídeos/química , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...