Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(5): 1306-1318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38103690

RESUMO

Vial breakage during or following freeze drying (lyophilization) is a well-known and documented phenomenon in the pharmaceutical industry. However, the underlying mechanism and probable root causes are not well characterized. Mostly, the phenomenon is attributed to the presence of crystallizing excipients, such as mannitol in the formulation, while other potential factors are often underestimated or not well studied. In this work we document a systematic multipronged approach to characterize and identify potential root cause(s) of vial breakage during lyophilization. Factors associated with formulation, product configuration, primary container and production process stress conditions were identified and their impact on vial breakage was studied in both lab and manufacturing scale conditions. Studies included: 1) strain gauge and lyophilization analysis for stress on glass vials with different formulation conditions and fill volumes, 2) manufacturing fill-finish process risk assessment (ex. loading and frictive force impact on the vials), and 3) glass vial design and ruggedness (ex. glass compression resistance or burst strength testing). Importantly, no single factor could be independently related to the extent of vial breakage observed during production. However, a combination of formulation, fill volume, and vial weakening processes encountered during at-scale production, such as vial handling, shelf loading and unloading, were identified to be the most probable root causes for the low levels of vial breakage observed. The work sheds light on an often-encountered problem in the pharmaceutical industry and the results presented in this paper argue against the simplistic root-cause explanations reported in literature. The work also provides insight into the possibility of implementing mitigative approaches to minimize or eliminate vial breakage associated with lyophilized drug products.


Assuntos
Química Farmacêutica , Embalagem de Medicamentos , Embalagem de Medicamentos/métodos , Química Farmacêutica/métodos , Indústria Farmacêutica , Liofilização/métodos , Vidro , Tecnologia Farmacêutica/métodos
2.
Int J Pharm ; 621: 121806, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35526696

RESUMO

Sevelamer hydrochloride (SH) or Renagel® is an effective phosphate binder prescribed to prevent the absorption of phosphate in end stage renal disease (ESRD) patients. The relationship between SH structure and binding capacity and affinity is very important and can be used in characterising the sensitivity of the hydrogel to binding conditions. Thus, a series of hydrogels were prepared by varying the amount of crosslinker, whilst the other hydrogel components were kept constant. Variation of this parameter influenced the hydrogel structure as shown by swelling data, differential scanning calorimetry and solid state nuclear magnetic resonance spectroscopy. The hydrogels' physical characteristics were found to correlate with the number of phosphate binding sites and affinity obtained from the Langmuir-Freundlich Isotherm (L-FI) and affinity distribution spectra (AD). The hydrogels formed using lower amounts of crosslinker showed a slight increase in binding capacity but with lower affinity. However, the influence of the pH of the binding media on the binding parameters of sevelamer hydrochloride was significant. This is the first report on the use of AD spectra generated from L-FI binding parameters in hydrogels, which demonstrates the sensitivity of the affinity and binding site numbers to changes in hydrogel physical properties and the pH of the binding media.


Assuntos
Hidrogéis , Poliaminas , Humanos , Fosfatos/metabolismo , Poliaminas/química , Sevelamer
3.
Int J Pharm ; 474(1-2): 25-32, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25102115

RESUMO

Sevelamer hydrochloride is the first non-aluminium, non-calcium-based phosphate binder developed for the management of hyperphosphatemia in end stage renal diseases. It is a synthetic ion-exchange polymer which binds and removes phosphate ions due to the high content of cationic charge associated with protonated amine groups on the polymer matrix. This is the first in-depth study investigating phosphate removal in vitro from aqueous solutions using commercially available sevelamer hydrochloride at physiological conditions of phosphate level, pH and temperature. The kinetic and thermodynamic parameters of phosphate binding onto the sevelamer hydrochloride particles were evaluated in order to define the binding process. A series of kinetic studies were carried out in order to delineate the effect of initial phosphate concentration, absorbent dose and temperature on the rate of binding. The results were analysed using three kinetic models with the best-fit of the experimental data obtained using a pseudo-second order model. Thermodynamic parameters provide in-depth information on inherent energetic changes that are associated with binding. Free energy ΔG°, enthalpy ΔH°, and entropy ΔS° changes were calculated in this study in order to assess the relationship of these parameters to polymer morphology. The binding reaction was found to be a spontaneous endothermic process with increasing entropy at the solid-liquid interface.


Assuntos
Fosfatos/química , Poliaminas/química , Termodinâmica , Sítios de Ligação , Íons/química , Cinética , Sevelamer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...