Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(26): 6351-6370, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38864220

RESUMO

Surface wrinkling provides an approach to modify the surfaces of biomedical devices to better mimic features of the extracellular matrix and guide cell attachment, proliferation, and differentiation. Biopolymer wrinkling on active materials holds promise but is poorly explored. Here we report a mechanically actuated assembly process to generate uniaxial micro-and nanosized silk fibroin (SF) wrinkles on a thermo-responsive shape-memory polymer (SMP) substrate, with wrinkling demonstrated under both dry and hydrated (cell compatible) conditions. By systematically investigating the influence of SMP programmed strain magnitude, film thickness, and aqueous media on wrinkle stability and morphology, we reveal how to control the wrinkle sizes on the micron and sub-micron length scale. Furthermore, as a parameter fundamental to SMPs, we demonstrate that the temperature during the recovery process can also affect the wrinkle characteristics and the secondary structures in the silk network. We find that with increasing SMP programmed strain magnitude, silk wrinkled topographies with increasing wavelengths and amplitudes are achieved. Furthermore, silk wrinkling is found to increase ß-sheet content, with spectroscopic analysis suggesting that the effect may be due primarily to tensile (e.g., Poisson effect and high-curvature wrinkle) loading modes in the SF, despite the compressive bulk deformation (uniaxial contraction) used to produce wrinkles. Silk wrinkles fabricated from sufficiently thick films (roughly 250 nm) persist after 24 h in cell culture medium. Using a fibroblast cell line, analysis of cellular response to the wrinkled topographies reveals high viability and attachment. These findings demonstrate use of wrinkled SF films under physiologically relevant conditions and suggest the potential for biopolymer wrinkles on biomaterials surfaces to find application in cell mechanobiology, wound healing, and tissue engineering.


Assuntos
Fibroínas , Fibroínas/química , Animais , Biopolímeros/química , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Estrutura Secundária de Proteína , Bombyx/química , Propriedades de Superfície , Seda/química , Fibroblastos/citologia , Materiais Inteligentes/química
2.
Polymers (Basel) ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38475293

RESUMO

Surface wrinkling provides an approach to fabricate micron and sub-micron-level biomaterial topographies that can mimic features of the dynamic, in vivo cell environment and guide cell adhesion, alignment, and differentiation. Most wrinkling research to date has used planar, two-dimensional (2D) substrates, and wrinkling work on three-dimensional (3D) structures has been limited. To enable wrinkle formation on architecturally complex, biomimetic 3D structures, here, we report a simple, low-cost experimental wrinkling approach that combines natural silk fibroin films with a recently developed advanced manufacturing technique for programming strain in complex 3D shape-memory polymer (SMP) scaffolds. By systematically investigating the influence of SMP programmed strain magnitude, silk film thickness, and aqueous media on wrinkle morphology and stability, we reveal how to generate and tune silk wrinkles on the micron and sub-micron scale. We find that increasing SMP programmed strain magnitude increases wavelength and decreases amplitudes of silk wrinkled topographies, while increasing silk film thickness increases wavelength and amplitude. Silk wrinkles persist after 24 h in cell culture medium. Wrinkled topographies demonstrate high cell viability and attachment. These findings suggest the potential for fabricating biomimetic cellular microenvironments that can advance understanding and control of cell-material interactions in engineering tissue constructs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...