Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 5: 100128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37223215

RESUMO

Almost 80% of chronic wounds have a bacterial biofilm present. These wound biofilms are caused by a range of organisms and are often polymicrobial. Pseudomonas aeruginosa is one of the most common causative organisms in wound infections and readily forms biofilms in wounds. To coordinate this, P. aeruginosa uses a process known as quorum sensing. Structural homologues of the quorum sensing signalling molecules have been used to disrupt this communication and prevent biofilm formation by Pseudomonas. However, these compounds have not yet reached clinical use. Here, we report the production and characterisation of a lyophilised PVA aerogel for use in delivering furanones to wound biofilms. PVA aerogels successfully release a model antimicrobial and two naturally occurring furanones in an aqueous environment. Furanone loaded aerogels inhibited biofilm formation in P. aeruginosa by up to 98.80%. Further, furanone loaded aerogels successfully reduced total biomass of preformed biofilms. Treatment with a sotolon loaded aerogel yielded a 5.16 log reduction in viable biofilm bound cells in a novel model of chronic wound biofilm, equivalent to the current wound therapy Aquacel AG. These results highlight the potential utility of aerogels in drug delivery to infected wounds and supports the use of biofilm inhibitory compounds as wound therapeutics.

2.
Foods ; 11(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159444

RESUMO

Poor solubility of high protein milk powders can be an issue during the production of nutritional formulations, as well as for end-users. One possible way to improve powder solubility is through the creation of vacuoles and pores in the particle structure using high pressure gas injection during spray drying. The aim of this study was to determine whether changes in particle morphology effect physical properties, such as hydration, water sorption, structural strength, glass transition temperature, and α-relaxation temperatures. Four milk protein concentrate powders (MPC, 80%, w/w, protein) were produced, i.e., regular (R) and agglomerated (A) without nitrogen injection and regular (RN) and agglomerated (AN) with nitrogen injection. Electron microscopy confirmed that nitrogen injection increased powder particles' sphericity and created fractured structures with pores in both regular and agglomerated systems. Environmental scanning electron microscopy (ESEM) showed that nitrogen injection enhanced the moisture uptake and solubility properties of RN and AN as compared with non-nitrogen-injected powders (R and A). In particular, at the final swelling at over 100% relative humidity (RH), R, A, AN, and RN powders showed an increase in particle size of 25, 20, 40, and 97% respectively. The injection of nitrogen gas (NI) did not influence calorimetric glass transition temperature (Tg), which could be expected as there was no change to the powder composition, however, the agglomeration of powders did effect Tg. Interestingly, the creation of porous powder particles by NI did alter the α-relaxation temperatures (up to ~16 °C difference between R and AN powders at 44% RH) and the structural strength (up to ~11 °C difference between R and AN powders at 44% RH). The results of this study provide an in-depth understanding of the changes in the morphology and physical-mechanical properties of nitrogen gas-injected MPC powders.

3.
Chemosphere ; 280: 130764, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33971423

RESUMO

Although widely accepted as a water sterilisation technique, chlorination results in the production of potentially harmful by-products, mainly Trihalomethanes. Furthermore, the chlorination process requires specialised infrastructure, management and high costs. In this research paper a potential alternative sterilisation technique was investigated. This rapid three-step process utilized Goethite Nanoparticles and the photosensitising capabilities of a xanthene dye. Rose Bengal (RB) a compound primarily used as a stain to diagnose damaged tissue in the eye was utilized under visible light excitation to sterilise water containing gram-positive Staphylococcus aureus and Bacillus cereus. Bacterial reductions (cfu/ml) of up to 6log10 are reported at RB concentrations of 0.5 mg/L and 10 mg/L for S. aureus and B. cereus, respectively. Goethite Nanoparticles (GNP's), an iron oxyhydroxide, were synthesised by co-precipitation of iron salts and used to adsorb RB post-sterilisation. Poly-vinyl Alcohol (PVA) functionalised GNP's were synthesised to highlight the adsorbent capabilities of the GNP surface. The adsorption capacity for uncoated GNPs was 476.19 mg/g, this reduced to 170.4 mg/g for PVA-GNP's, highlighting the highly porous nature of the synthesised GNP surface. Adsorption was optimal in slightly acidic conditions (pH5-6). The adsorption parameters best followed Lagergens Pseudo-second order kinetics with correlation coefficients close to unity. At the highest envisaged RB concentration (10 mg/L) approximately 20 mg/L GNP's was required to remove the dye from solution post-treatment. Flame Atomic Absorption analysis of the water post-removal revealed Iron concentrations of 0.058 mg/L. This correlates to removal efficacy of 99.71% with residual iron levels below the EU recommended limit of 0.2 mg/L.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos , Concentração de Íons de Hidrogênio , Compostos de Ferro , Cinética , Minerais , Staphylococcus aureus , Xantenos
4.
Eur J Pharm Biopharm ; 163: 49-59, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33798727

RESUMO

Sonodynamic therapy (SDT) is an emerging stimulus-responsive approach for the targeted treatment of solid tumours. However, its ability to generate stimulus-responsive cytotoxic reactive oxygen species (ROS), is compromised by tumour hypoxia. Here we describe a robust means of preparing a pH-sensitive polymethacrylate-coated CaO2 nanoparticle that is capable of transiently alleviating tumour hypoxia. Systemic administration of particles to animals bearing human xenograft BxPC3 pancreatic tumours increases oxygen partial pressures (PO2) to 20-50 mmHg for over 40 min. RT-qPCR analysis of expression of selected tumour marker genes in treated animals suggests that the transient production of oxygen is sufficient to elicit effects at a molecular genetic level. Using particles labelled with the near infra-red (nIR) fluorescent dye, indocyanine green, selective uptake of particles by tumours was observed. Systemic administration of particles containing Rose Bengal (RB) at concentrations of 0.1 mg/mg of particles are capable of eliciting nanoparticle-induced, SDT-mediated antitumour effects using the BxPC3 human pancreatic tumour model in immuno-compromised mice. Additionally, a potent abscopal effect was observed in off-target tumours in a syngeneic murine bilateral tumour model for pancreatic cancer and an increase in tumour cytotoxic T cells (CD8+) and a decrease in immunosuppressive tumour regulatory T cells [Treg (CD4+, FoxP3+)] was observed in both target and off-target tumours in SDT treated animals. We suggest that this approach offers significant potential in the treatment of both focal and disseminated (metastatic) pancreatic cancer.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Neoplasias Pancreáticas/tratamento farmacológico , Fotoquimioterapia/métodos , Terapia por Ultrassom/métodos , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Microbolhas , Nanopartículas/química , Oxigênio/farmacocinética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Rosa Bengala/administração & dosagem , Rosa Bengala/farmacocinética , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Microbiol ; 11: 1477, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733412

RESUMO

One current strategy to deal with the serious issue of antibiotic resistance is to use biosurfactants, weak antimicrobials in their own right, with antibiotics in order to extend the efficacy of antibiotics. Although an adjuvant effect has been observed, the underlying mechanisms are poorly understood. To investigate the nature of the antibiotic and biosurfactant interaction, we undertook a scanning electron microscopy (SEM) and atomic force microscopy (AFM) microscopic study of the effects of the tetracycline antibiotic, combined with sophorolipid and rhamnolipid biosurfactants, on Methicillin-resistant Staphylococcus aureus using tetracycline concentrations below and above the minimum inhibitory concentration (MIC). Control and treated bacterial samples were prepared with an immersion technique by adsorbing the bacteria onto glass substrates grafted with the poly-cationic polymer polyethyleneimine. Bacterial surface morphology, hydrophobic and hydrophilic surface characters as well as the local bacterial cell stiffness were measured following combined antibiotic and biosurfactant treatment. The sophorolipid biosurfactant stands alone insofar as, when used with the antibiotic at sub-MIC concentration, it resulted in bacterial morphological changes, larger diameters (from 758 ± 75 to 1276 ± 220 nm, p-value = 10-4) as well as increased bacterial core stiffness (from 205 ± 46 to 396 ± 66 mN/m, p-value = 5 × 10-5). This investigation demonstrates that such combination of microscopic analysis can give useful information which could complement biological assays to understand the mechanisms of synergy between antibiotics and bioactive molecules such as biosurfactants.

6.
Exp Eye Res ; 179: 75-92, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30365943

RESUMO

Pterygium is a pathological proliferative condition of the ocular surface, characterised by formation of a highly vascularised, fibrous tissue arising from the limbus that invades the central cornea leading to visual disturbance and, if untreated, blindness. Whilst chronic ultraviolet (UV) light exposure plays a major role in its pathogenesis, higher susceptibility to pterygium is observed in some families, suggesting a genetic component. In this study, a Northern Irish family affected by pterygium but reporting little direct exposure to UV was identified carrying a missense variant in CRIM1 NM_016441.2: c.1235 A > C (H412P) through whole-exome sequencing and subsequent analysis. CRIM1 is expressed in the developing eye, adult cornea and conjunctiva, having a role in cell differentiation and migration but also in angiogenesis, all processes involved in pterygium formation. We demonstrate elevated CRIM1 expression in pterygium tissue from additional individual Northern Irish patients compared to unaffected conjunctival controls. UV irradiation of HCE-S cells resulted in an increase in ERK phosphorylation and CRIM1 expression, the latter further elevated by the addition of the MEK1/2 inhibitor, U0126. Conversely, siRNA knockdown of CRIM1 led to decreased UV-induced ERK phosphorylation and increased BCL2 expression. Transient expression of the mutant H412P CRIM1 in corneal epithelial HCE-S cells showed that, unlike wild-type CRIM1, it was unable to reduce the cell proliferation, increased ERK phosphorylation and apoptosis induced through a decrease of BCL2 expression levels. We propose here a series of intracellular events where CRIM1 regulation of the ERK pathway prevents UV-induced cell proliferation and may play an important role in the in the pathogenesis of pterygium.


Assuntos
Epitélio Corneano/efeitos da radiação , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Pterígio/genética , Raios Ultravioleta , Adulto , Western Blotting , Receptores de Proteínas Morfogenéticas Ósseas , Células Cultivadas , Epitélio Corneano/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Linhagem , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pterígio/etiologia , Pterígio/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento Completo do Genoma
7.
Clin Cosmet Investig Dermatol ; 11: 461-465, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349343

RESUMO

INTRODUCTION: Emollient therapy is the mainstay for treating skin conditions such as atopic dermatitis and psoriasis. New emollients have been introduced recently and are assumed to be therapeutically interchangeable with the innovator products because, superficially, they appear to have similar compositions. This study compares a) the ex vivo human skin occlusion performance and b) the visual and microscopic properties of Isomol gel (IMG) and Doublebase gel (DBG). MATERIALS AND METHODS: Occlusion was measured gravimetrically by reduction in cumulative 48-hour evaporative weight loss from ex vivo human skin samples following single applications of the two test emollients and Vaseline®. Skin samples from a single donor were mounted in Franz diffusion cells and then the emollients were spread over the skin surface with an applied dose of approximately 2 mg/cm2. The assemblies (four replicates per treatment) were then accurately weighed at baseline (T0) and again after 5-, 24-, and 48-hour postapplication. The quality of the two emollient gel formulations was compared by visual examination of their film-forming characteristics and by microstructural examination using environmental scanning electron microscopy (ESEM). RESULTS: Occlusivity of the DBG emollient gel formulation was comparable with Vaseline and substantially better than IMG, with the DBG-treated skin samples losing less than half as much weight as the IMG-treated skin samples over 48 hours and at a much slower rate during the first 5 hours. The film-forming characteristics and microstructure of the gels were also very different. Whereas DBG maintained a smooth, uniform film over 24 hours, the IMG formulation phase-separated. ESEM results showed that the DBG emulsion has a stable structural matrix with uniform oil droplets, whereas for IMG the emulsion system is inhomogeneous with the oil phase coalescing into larger irregular shaped rafts. CONCLUSIONS: We have demonstrated substantial performance differences between two prescribed emollient gels.

8.
Pharm Dev Technol ; 23(4): 370-381, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28285551

RESUMO

CONTEXT: Size, encapsulation efficiency and stability affect the sustained release from nanoparticles containing protein-type drugs. OBJECTIVES: Insulin was used to evaluate effects of formulation parameters on minimizing diameter, maximizing encapsulation efficiency and preserving blood glucose control following intraperitoneal (IP) administration. METHODS: Homogenization or sonication was used to incorporate insulin into poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with increasing poly(ethylene glycol) (PEG) content. Effects of polymer type, insulin/polymer loading ratio and stabilizer in the internal aqueous phase on physicochemical characteristics of NP, in vitro release and stability of encapsulated insulin were investigated. Entrapment efficiency and release were assessed by radioimmunoassay and bicinconnic acid protein assay, and stability was evaluated using SDS-PAGE. Bioactivity of insulin was assessed in streptozotocin-induced, insulin-deficient Type I diabetic mice. RESULTS: Increasing polymeric PEG increased encapsulation efficiency, while the absence of internal stabilizer improved encapsulation and minimized burst release kinetics. Homogenization was shown to be superior to sonication, with NP fabricated from 10% PEG-PLGA having higher insulin encapsulation, lower burst release and better stability. Insulin-loaded NP maintained normoglycaemia for 24 h in diabetic mice following a single bolus, with no evidence of hypoglycemia. CONCLUSIONS: Insulin-loaded NP prepared from 10% PEG-PLGA possessed therapeutically useful encapsulation and release kinetics when delivered by the IP route.


Assuntos
Preparações de Ação Retardada/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Ácido Láctico/química , Nanopartículas/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Animais , Emulsões/química , Hipoglicemiantes/uso terapêutico , Injeções Intraperitoneais , Insulina/uso terapêutico , Masculino , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
9.
Sci Rep ; 7(1): 17522, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29235503

RESUMO

Clostridium difficile infection is a growing problem in healthcare settings worldwide and results in a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibiotic resistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenging gut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37-41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Chaperonas Moleculares , Proteínas de Bactérias/genética , Biofilmes , Clostridioides difficile/ultraestrutura , Escherichia coli , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Movimento/fisiologia , Mutação , Fenótipo , Temperatura
10.
Int J Pharm ; 525(1): 12-20, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412449

RESUMO

Drug delivery to the brain is still a major challenge in the field of therapeutics, especially for large and hydrophilic compounds. In order to achieve drug delivery of therapeutic concentration in the central nervous system, the problematic blood brain barrier (BBB) must be overcome. This work presents the formulation of a targeted nanoparticle-based drug delivery system using a specific neural cell targeting ligand, rabies virus derived peptide (RDP). Characterization studies revealed that RDP could be conjugated to drug-loaded PLGA nanoparticles of average diameter 257.10±22.39nm and zeta potential of -5.51±0.73mV. In vitro studies showed that addition of RDP to nanoparticles enhanced drug accumulation in a neural cell line specifically as opposed to non-neural cell lines. It was revealed that this drug delivery system is reliant upon nicotinic acetylcholine receptor (nAChR) function for RDP-facilitated effects, supporting a cellular uptake mechanism of action. The specific neural cell targeting capabilities of RDP via the nAChR offers a non-toxic, non-invasive and promising approach to the delivery of therapeutics to the brain.


Assuntos
Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neurônios/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Humanos , Peptídeos/administração & dosagem , Vírus da Raiva , Proteínas Virais/administração & dosagem
11.
Dalton Trans ; 41(25): 7461-3, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22499230

RESUMO

A hysteretic spin transition is induced in a solution assembly of a mononuclear Fe(III) amphiphilic complex which exhibits only gradual spin crossover in the solid state. The hysteretic behavior is dependent on dynamic solution assembly and removal of solvent causes reversion to the original bulk solid magnetic response.


Assuntos
Ferro/química , Compostos Organometálicos/química , Cloreto de Metileno/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Soluções , Tensoativos/química
12.
Tissue Eng Part C Methods ; 17(1): 1-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20594113

RESUMO

With the advance of nanotechnology in biomaterials science and tissue engineering, it is essential that new techniques become available to observe processes that take place at the direct interface between tissue and scaffold materials. Here, Cryo DualBeam focused ion beam-scanning electron microscopy (FIB-SEM) was used as a novel approach to observe the interactions between frozen hydrated cells and nanometric structures in high detail. Through a comparison of images acquired with transmission electron microscopy (TEM), conventional FIB-SEM operated at ambient temperature, and Cryo DualBeam FIB-SEM, the advantages and disadvantages of each technique were evaluated. Ultrastructural details of both (extra)cellular components and cell organelles were best observe with TEM. However, processing artifacts such as shrinkage of cells at the substrate interface were introduced in both TEM and conventional FIB-SEM. In addition, the cellular contrast in conventional FIB-SEM was low; consequently, cells were difficult to distinguish from the adjoining substrate. Cryo DualBeam FIB-SEM did preserve (extra)cellular details like the contour, cell membrane, and mineralized matrix. The three described techniques have proven to be complementary for the evaluation of processes that take place at the interface between tissue and substrate.


Assuntos
Microscopia Crioeletrônica/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão , Nanotecnologia/métodos , Animais , Artefatos , Materiais Biocompatíveis/química , Imageamento Tridimensional , Masculino , Osteoblastos/metabolismo , Poliestirenos/química , Ratos , Ratos Wistar , Silício/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
13.
Ultramicroscopy ; 102(1): 1-5, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15556694

RESUMO

This work describes a system for precise re-location of cells within a monolayer after atomic force imaging. As we know little about probe interaction with soft biological surfaces any corroborative evidence is of great importance. For example, it is of paramount importance in living cell force microscopy that interrogated cells can be re-located and imaged by other corroborative technologies. Methodologies expressed here have shown that non-invasive force parameters can be established for specific cell types. Additionally, we show that the same sample can be transferred reliably to an SEM. Results here indicate that further work with live cells should initially establish appropriate prevailing force parameters and that cell damage should be checked for before and after an imaging experiment.


Assuntos
Sobrevivência Celular , Diagnóstico por Imagem/métodos , Mucosa Intestinal/citologia , Microscopia de Força Atômica , Animais , Células Cultivadas , Mucosa Intestinal/ultraestrutura , Microscopia Eletrônica de Varredura , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...