Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 61: 102630, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36796135

RESUMO

Type 2 diabetes mellitus (T2D) affects millions of people worldwide and is one of the leading causes of morbidity and mortality. The skeletal muscle (SKM) is one of the most important tissues involved in maintaining glucose homeostasis and substrate oxidation, and it undergoes insulin resistance in T2D. In this study, we identify the existence of alterations in the expression of mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in skeletal muscle from two different forms of T2D: early-onset type 2 diabetes (YT2) (onset of the disease before 30 years of age) and the classical form of the disease (OT2). GSEA analysis from microarray studies revealed the repression of mitochondrial mt-aaRSs independently of age, which was validated by real-time PCR assays. In agreement with this, a reduced expression of several encoding mt-aaRSs was also detected in skeletal muscle from diabetic (db/db) mice but not in obese ob/ob mice. In addition, the expression of the mt-aaRSs proteins most relevant in the synthesis of mitochondrial proteins, threonyl-tRNA, and leucyl-tRNA synthetases (TARS2 and LARS2) were also repressed in muscle from db/db mice. It is likely that these alterations participate in the reduced expression of proteins synthesized in the mitochondria detected in db/db mice. We also document an increased iNOS abundance in mitochondrial-enriched muscle fractions from diabetic mice that may inhibit aminoacylation of TARS2 and LARS2 by nitrosative stress. Our results indicate a reduced expression of mt-aaRSs in skeletal muscle from T2D patients, which may participate in the reduced expression of proteins synthesized in mitochondria. An enhanced mitochondrial iNOS could play a regulatory role in diabetes.


Assuntos
Aminoacil-tRNA Sintetases , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Aminoacil-tRNA Sintetases/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , RNA de Transferência/metabolismo
2.
Sci Rep ; 7(1): 13850, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062026

RESUMO

The molecular mechanisms responsible for the pathophysiological traits of type 2 diabetes are incompletely understood. Here we have performed transcriptomic analysis in skeletal muscle, and plasma metabolomics from subjects with classical and early-onset forms of type 2 diabetes (T2D). Focused studies were also performed in tissues from ob/ob and db/db mice. We document that T2D, both early and late onset, are characterized by reduced muscle expression of genes involved in branched-chain amino acids (BCAA) metabolism. Weighted Co-expression Networks Analysis provided support to idea that the BCAA genes are relevant in the pathophysiology of type 2 diabetes, and that mitochondrial BCAA management is impaired in skeletal muscle from T2D patients. In diabetic mice model we detected alterations in skeletal muscle proteins involved in BCAA metabolism but not in obese mice. Metabolomic analysis revealed increased levels of branched-chain keto acids (BCKA), and BCAA in plasma of T2D patients, which may result from the disruption of muscle BCAA management. Our data support the view that inhibition of genes involved in BCAA handling in skeletal muscle takes place as part of the pathophysiology of type 2 diabetes, and this occurs both in early-onset and in classical type 2 diabetes.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Biomarcadores/análise , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto , Idade de Início , Aminoácidos de Cadeia Ramificada/genética , Animais , Estudos de Casos e Controles , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Resistência à Insulina , Masculino , Metabolômica , Camundongos , Camundongos Obesos , Pessoa de Meia-Idade , Proteínas Musculares/genética , Músculo Esquelético/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...