Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Biol Anthropol ; 184(1): e24893, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180115

RESUMO

OBJECTIVES: A modern pattern (rate and duration) of dental development occurs relatively recently during human evolution. Given the temporal overlap of Homo naledi with the first appearance of fossil Homo sapiens in Africa, this small-bodied and small-brained hominin presents an opportunity to elucidate the evolution of enamel growth in the hominin clade. Here we conduct the first histological study of two permanent mandibular canines and one permanent maxillary first molar, representing three individuals attributed to H. naledi. We reconstruct the rate and duration of enamel growth and compare these findings to those reported for other fossil hominins and recent humans. MATERIALS AND METHODS: Thin sections of each tooth were produced using standard histological methods. Daily and longer period incremental markings were measured to reconstruct enamel secretion and extension rates, Retzius periodicity, canine crown and molar cusp formation time. RESULTS: Daily enamel secretion rates overlapped with those from recent hominins. Canine crown formation time is similar to that observed in recent Europeans but is longer than canine formation times reported for most other hominins including Australopithecus and H. neanderthalensis. The extended period of canine formation appears to be due to a relatively tall enamel crown and a sustained slow rate of enamel extension in the cervical portion of the crown. A Retzius periodicity of 11 days for the canines, and nine days for the molar, in H. naledi parallel results found in recent humans. An 11-day periodicity has not been reported for Late Pleistocene Homo (H. erectus, H. neanderthalensis) and is rarely found in Australopithecus and Paranthropus species. DISCUSSION: Enamel growth of H. naledi is most similar to recent humans though comparative data are limited for most fossil hominin species. The high Retzius periodicity values do not follow expectations for a small-brained hominin.


Assuntos
Hominidae , Animais , Humanos , Dente Molar , Coroa do Dente , Dente Canino , Esmalte Dentário
2.
J Hum Evol ; 180: 103384, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201412

RESUMO

This study investigates aspects of molar form in three African colobine species: Colobus polykomos, Colobus angolensis, and Piliocolobus badius. Our samples of C. polykomos and P. badius are from the Taï Forest, Ivory Coast; our sample of C. angolensis is from Diani, Kenya. To the extent that protective layers surrounding seeds are hard, we predicted that molar features related to hard-object feeding would be more pronounced in Colobus than they are Piliocolobus, as seed-eating generally occurs at higher frequencies in species of the former. We further predicted that among the colobines we studied, these features would be most pronounced in Taï Forest C. polykomos, which feeds on Pentaclethra macrophylla seeds encased within hard and tough seed pods. We compared overall enamel thickness, enamel thickness distribution, absolute crown strength, cusp tip geometry, and flare among molar samples. Sample sizes per species and molar type varied per comparison. We predicted differences in all variables except overall enamel thickness, which we expected would be invariant among colobines as a result of selection for thin enamel in these folivorous species. Of the variables we examined, only molar flare differed significantly between Colobus and Piliocolobus. Our findings suggest that molar flare, an ancient feature of cercopithecoid molars, was retained in Colobus but not in Piliocolobus, perhaps as a result of differences in the seed-eating proclivities of the two genera. Contrary to predictions, none of the aspects of molar form we investigated tracked current dietary differences in seed-eating between the two Colobus species. Finally, we explored the possibility that molar flare and absolute crown strength, when analyzed together, might afford greater differentiation among these colobine species. A multivariate t test of molar flare and absolute crown strength differentiated C. polykomos and P. badius, possibly reflecting known niche divergence between these two sympatric Taï Forest species.


Assuntos
Colobinae , Colobus , Animais , Côte d'Ivoire , Dieta , Dente Molar
3.
Anat Rec (Hoboken) ; 305(1): 123-143, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843152

RESUMO

Studies of enamel growth and thickness, whether in paleoanthropology, bioarchaeology, or primatology, require measurements of crown height (CH), cuspal enamel thickness (CET), average (AET), and/or regional enamel thickness (RegAET) on complete, unworn crowns. Yet because fully unworn crowns are uncommon, three methods to bolster sample sizes by reconstructing slightly worn teeth have been developed: Profile, Polynomial, and Pen Tool. Although these methods have been tested for accuracy, no study has yet directly compared the three methods to assess their performance across CH, CET, AET, and RegAET measurements. Moreover, it is currently unclear how accurate the methods are when reconstructing crowns with varying degrees of wear. The present study addresses this gap in our understanding of how these methods perform on four key dental measurements, evaluates the degree of wear for which accurate crown reconstructions can be completed, and offers recommendations for applying these methods. Here, the methods are compared on Paranthropus robustus mandibular molars, a sample chosen because it exhibits variable morphology, presenting a challenge for reconstruction methods. For minimally worn teeth, Profile, Polynomial, and Pen Tool methods can be employed (in that order) for all measurements except CET, which cannot be reliably measured on reconstructions. For teeth with wear that obliterates the nadir of the occlusal basin or dentin horns, CH and AET can be measured using Profile and Polynomial reconstructions; however, no other measurements or methods were reliable. Recommendations provided here will make it possible to increase sample sizes and replicability, enhancing studies of enamel thickness and growth.


Assuntos
Coroa do Dente , Dente , Animais , Esmalte Dentário , Dente Molar
5.
J Struct Biol ; 211(2): 107550, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32553779

RESUMO

Life on earth is regulated by biological rhythms, some of which oscillate with a circadian, monthly or lunar cycle. Recent research suggests that there is a near weekly biorhythm that may exert an influence on human skeletal growth. Evidence for the timing of this biorhythm is retained in tooth enamel as the periodicity of Retzius lines. Studies report that Retzius periodicity (RP) relates to adult human stature and enamel thickness. Adult human stature is sexually dimorphic, and so is enamel thickness of maxillary third molars (M3) but not mandibular M3. Yet, previous studies report sex differences in RP are apparent in some populations but not others, and it is unknown if dimorphism in enamel thickness relates to RP. To further our understanding of this biorhythm we analysed sex-related variation in RP and its relationship with enamel thickness in a sample of M3's (n = 94) from adults in Northern Britain. Results reveal RP was significantly higher in our sample of female molars compared to those of males, which is consistent with the previously reported correlation between the biorhythm and adult stature. The RP of maxillary M3 related to sex differences in enamel thickness, but this relationship was not present in mandibular M3. Our results support previous findings suggesting that this biorhythm is sexually dimorphic and provide the first evidence that RP may be one factor influencing sex differences in enamel thickness. Our study also shows that correlations between RP and enamel thickness appear to be most readily detected for tooth types with sufficiently wide ranges of enamel thickness variation, as is the case for maxillary but not mandibular M3. Achieving a sufficient sample size was critical for detecting a sex difference in periodicity.


Assuntos
Esmalte Dentário/ultraestrutura , Dentina/ultraestrutura , Periodicidade , Caracteres Sexuais , Adulto , Esmalte Dentário/fisiologia , Dentina/fisiologia , Feminino , Humanos , Masculino , Mandíbula/fisiologia , Mandíbula/ultraestrutura , Dente Molar/fisiologia , Dente Molar/ultraestrutura , Dente/fisiologia , Dente/ultraestrutura
6.
Am J Phys Anthropol ; 173(1): 141-157, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32078160

RESUMO

OBJECTIVES: This study explores variation and trends in first molar enamel thickness and daily enamel secretion rates over a 2000 year period in Britain. METHODS: Permanent first molars (n = 89) from the Roman, Anglo-Saxon, and Medieval periods, as well as modern-day Britain, were analyzed using standard histological methods. Relative enamel thickness (RET) and linear measurements of cuspal and lateral thickness were calculated for mesial cusps. Daily secretion rates (DSRs) were calculated for inner, mid, and outer enamel regions in both cuspal and lateral enamel. Significant differences and trends were identified between samples using nonparametric statistical tests. RESULTS: Enamel thickness differed between some populations, but no temporal trends were identified. Early Anglo-Saxon molars had significantly thinner RET than both Late Anglo-Saxon (p < .00) and Medieval (p < .00) molars. Lateral enamel from the Roman molars was significantly thinner than the modern-day sample (p = .04). In contrast, a significant slowing trend in DSRs was observed across the more ancient to modern-day samples in every measured region except the mid-lateral enamel region. DISCUSSION: This study presents the first evidence for a gradual slowing in the daily rate that enamel is secreted in molars over the past 2000 years in Britain. However, this trend was not matched by consistent or significant positive or negative shifts in enamel thickness. These findings suggest that modern human molars of similar enamel thickness, from different modern and ancient populations, formed at different rates.


Assuntos
Esmalte Dentário/anatomia & histologia , Esmalte Dentário/crescimento & desenvolvimento , Antropologia Física , Humanos , Dente Molar/anatomia & histologia , Dente Molar/crescimento & desenvolvimento , Reino Unido
7.
Anat Rec (Hoboken) ; 302(9): 1516-1535, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30537229

RESUMO

Dental replicas are frequently utilized in paleoanthropological studies of perikymata and enamel hypoplasia. However, fossil teeth are often fragile and worn, causing two problems: (1) the risk of damage by removing enamel fragments when impression-making material is separated from the fossil tooth surface, and (2) the need to reconstruct worn portions of the crown to assess perikymata number, distribution, and hypoplasia timing. This study presents the advantages of µCT data of canines and lateral incisors for (1) detecting cracks along the enamel-dentine junction (EDJ) which could cause damage when casting, and (2) reliably and non-destructively reconstructing worn or broken cusps. Fragile teeth of Homo naledi, Miocene, and Pleistocene specimens were µCT-scanned: 2D virtual sections and 3D models allowed for inspecting crack pattern beyond the external surface and 2D virtual sections were used to digitally reconstruct cusp tips (only Homo naledi). Micro-CT scans allowed cracks running along the EDJ and communicating with radial cracks in the enamel to be identified prior to casting. Cusp reconstructions using µCT data were conducted as precisely as when using thin-sections or photographs, and with high intra- and inter-observer agreement, while preserving the original specimen and affording numerous planes of virtual section. When available, µCT data should be inspected prior to tooth casting to exclude teeth that show a pattern of cracks that could lead to damage. Virtual sections allow for accessible, reliable, and non-destructive cusp reconstructions that may be used for developmental (e.g., perikymata and enamel hypoplasia) or enamel thickness studies. Anat Rec, 302:1516-1535, 2019. © 2018 American Association for Anatomy.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Procedimentos de Cirurgia Plástica/métodos , Dente/anatomia & histologia , Dente/cirurgia , Microtomografia por Raio-X/métodos , Animais , Fósseis/diagnóstico por imagem , Hominidae/crescimento & desenvolvimento , Dente/diagnóstico por imagem
8.
J Hum Evol ; 121: 40-54, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29709292

RESUMO

Perikymata, incremental growth lines visible on tooth enamel surfaces, differ in their distribution and number among hominin species, although with overlapping patterns. This study asks: (1) How does the distribution of perikymata along the lateral enamel surface of Homo naledi anterior teeth compare to that of other hominins? (2) When both perikymata distribution and number are analyzed together, how distinct is H. naledi from other hominins? A total of 19 permanent anterior teeth (incisors and canines) of H. naledi were compared, by tooth type, to permanent anterior teeth of other hominins: Australopithecus afarensis, Australopithecus africanus, Paranthropus robustus, Paranthropus boisei, Homo ergaster/Homo erectus, other early Homo, Neandertals, and modern humans, with varying sample sizes. Repeated measures analyses of the percentage of perikymata per decile of reconstructed crown height yielded several statistically significant differences between H. naledi and other hominins. Canonical variates analysis of percentage of perikymata in the cervical half of the crown together with perikymata number revealed that, in 8 of 19 cases, H. naledi teeth were significantly unlikely to be classified as other hominins, while exhibiting least difference from modern humans (especially southern Africans). In a cross-validated analysis, 68% of the H. naledi teeth were classified as such, while 32% were classified as modern human (most often southern African). Of 313 comparative teeth use for this analysis, only 1.9% were classified as H. naledi. What tends to differentiate H. naledi anterior tooth crowns from those of most other hominins, including some modern humans, is strongly skewed perikymata distributions combined with perikymata numbers that fall in the middle to lower ranges of hominin values. H. naledi therefore tends toward a particular combination of these features that is less often seen in other hominins. Implications of these data for the growth and development of H. naledi anterior teeth are considered.


Assuntos
Esmalte Dentário/crescimento & desenvolvimento , Hominidae/crescimento & desenvolvimento , Animais , Fósseis
9.
Anat Rec (Hoboken) ; 301(1): 125-139, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29034606

RESUMO

Enamel formation front (EFF) angles represent the leading edge of enamel matrix secretion at particular points in time. These angles are influenced by rates of enamel extension (the rates at which tooth crowns grow in height), rates of enamel matrix secretion and the angles that prisms make with the enamel-dentine junction. Previous research suggests, but has not yet established, that these angles reflect aspects of primate biology related to their pace of growth and development, most notably brain and body size. The present study tested this possibility on histological sections using phylogenetically-controlled and Bonferroni-corrected analyses spanning a broad taxonomic range. Ten species were represented in the analysis of anterior teeth; 17 in the analysis of posterior (postcanine) teeth (with varying sample sizes). Also, tested was the relationship of EFF angles to striae of Retzius periodicity (long period growth rhythms in enamel) and degree of folivory, as both factors are related to primate developmental rates. Finally, several analyses were conducted to investigate whether tooth size (operationalized as EDJ length) might mediate these relationships. Central results are as follows: (1) Relationships between EFF angles and brain weight (anterior teeth) and between EFF angles and body mass (anterior and posterior teeth) are statistically significant and (2) Mid-crown EFF angles are not statistically significantly related to EDJ lengths. These results suggest that tooth size does not mediate relationships between EFF angles and brain weight/body mass and are discussed with respect to underlying enamel growth variables (especially rates of enamel extension and secretion). Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:125-139, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Esmalte Dentário/crescimento & desenvolvimento , Dentina/crescimento & desenvolvimento , Primatas/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Animais , Filogenia
10.
PLoS One ; 8(8): e71428, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936506

RESUMO

The analysis of dental microwear is commonly used by paleontologists and anthropologists to clarify the diets of extinct species, including herbivorous and carnivorous mammals. Currently, there are numerous methods employed to quantify dental microwear, varying in the types of microscopes used, magnifications, and the characterization of wear in both two dimensions and three dimensions. Results from dental microwear studies utilizing different methods are not directly comparable and human quantification of wear features (e.g., pits and scratches) introduces interobserver error, with higher error being produced by less experienced individuals. Dental microwear texture analysis (DMTA), which analyzes microwear features in three dimensions, alleviates some of the problems surrounding two-dimensional microwear methods by reducing observer bias. Here, we assess the accuracy and comparability within and between 2D and 3D dental microwear analyses in herbivorous and carnivorous mammals at the same magnification. Specifically, we compare observer-generated 2D microwear data from photosimulations of the identical scanned areas of DMTA in extant African bovids and carnivorans using a scanning white light confocal microscope at 100x magnification. Using this magnification, dental microwear features quantified in 2D were able to separate grazing and frugivorous bovids using scratch frequency; however, DMTA variables were better able to discriminate between disparate dietary niches in both carnivorous and herbivorous mammals. Further, results demonstrate significant interobserver differences in 2D microwear data, with the microwear index remaining the least variable between experienced observers, consistent with prior research. Overall, our results highlight the importance of reducing observer error and analyzing dental microwear in three dimensions in order to consistently interpret diets accurately.


Assuntos
Carnivoridade , Dieta , Herbivoria , Imageamento Tridimensional , Mamíferos , Paleodontologia/métodos , Dente , Animais , Variações Dependentes do Observador , Ruminantes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...