Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
APL Bioeng ; 8(3): 036104, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38966325

RESUMO

Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on both biochemical signaling and the mechanical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue using discrete element method simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area At between cancer cells and adipocytes. We determine the long-time value of At vs the activity and strength of the cohesion between cancer cells, as well as the mechanical properties of the adipocytes and extracellular matrix in which adipocytes are embedded. We show that the degree of invasion collapses onto a master curve as a function of the dimensionless energy scale Ec , which grows linearly with the cancer cell velocity persistence time and fluctuations, is inversely proportional to the system pressure, and is offset by the cancer cell cohesive energy. When E c > 1 , cancer cells will invade the adipose tissue, whereas for E c < 1 , cancer cells and adipocytes remain de-mixed. We also show that At decreases when the adipocytes are constrained by the ECM by an amount that depends on the spatial heterogeneity of the adipose tissue.

2.
PLoS Comput Biol ; 20(7): e1012221, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008525

RESUMO

Chromatin is a polymer complex of DNA and proteins that regulates gene expression. The three-dimensional (3D) structure and organization of chromatin controls DNA transcription and replication. High-throughput chromatin conformation capture techniques generate Hi-C maps that can provide insight into the 3D structure of chromatin. Hi-C maps can be represented as a symmetric matrix [Formula: see text], where each element represents the average contact probability or number of contacts between chromatin loci i and j. Previous studies have detected topologically associating domains (TADs), or self-interacting regions in [Formula: see text] within which the contact probability is greater than that outside the region. Many algorithms have been developed to identify TADs within Hi-C maps. However, most TAD identification algorithms are unable to identify nested or overlapping TADs and for a given Hi-C map there is significant variation in the location and number of TADs identified by different methods. We develop a novel method to identify TADs, KerTAD, using a kernel-based technique from computer vision and image processing that is able to accurately identify nested and overlapping TADs. We benchmark this method against state-of-the-art TAD identification methods on both synthetic and experimental data sets. We find that the new method consistently has higher true positive rates (TPR) and lower false discovery rates (FDR) than all tested methods for both synthetic and manually annotated experimental Hi-C maps. The TPR for KerTAD is also largely insensitive to increasing noise and sparsity, in contrast to the other methods. We also find that KerTAD is consistent in the number and size of TADs identified across replicate experimental Hi-C maps for several organisms. Thus, KerTAD will improve automated TAD identification and enable researchers to better correlate changes in TADs to biological phenomena, such as enhancer-promoter interactions and disease states.


Assuntos
Algoritmos , Cromatina , Biologia Computacional , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Biologia Computacional/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Animais
3.
ArXiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38800654

RESUMO

Proteins fold to a specific functional conformation with a densely packed hydrophobic core that controls their stability. We develop a geometric, yet all-atom model for proteins that explains the universal core packing fraction of ϕc=0.55 found in experimental measurements. We show that as the hydrophobic interactions increase relative to the temperature, a novel jamming transition occurs when the core packing fraction exceeds ϕc. The model also recapitulates the global structure of proteins since it can accurately refold to native-like structures from partially unfolded states.

4.
ArXiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38800659

RESUMO

Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure in vivo. Inter-residue distances measured in vivo can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics in vivo. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairs Nr that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints, Nr/N≲0.08, where N is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins in vivo. Significance: Determining protein structure in vivo is essential for understanding protein function. Most protein structures have been studied in non-physiological conditions using x-ray crystallography, NMR spectroscopy, and cryo-electron microscopy. Thus, we do not know whether the cellular environment significantly affects protein structure. We emphasize the benefits of FRET-assisted molecular dynamics simulations in characterizing protein structure in vivo at the atomic scale. We identify the minimum number of FRET pairs that can induce conformational changes in several proteins, including one that has been characterized using in-cell NMR.

5.
ArXiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562454

RESUMO

Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on numerous biochemical and physical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue as a physical process by carrying out simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area At between cancer cells and adipocytes. We determine the long-time value of At versus the activity and strength of the cohesion between cancer cells, as well as mechanical properties of the adipocytes and extracellular matrix (ECM) in which the adipocytes are embedded. We show that the degree of invasion collapses onto a master curve by plotting it versus a dimensionless energy scale Ec, which grows linearly with mean-square fluctuations and persistence time of the cancer cell velocities, is inversely proportional to the pressure of the system, and has an offset that increases with the cancer cell cohesive energy. The condition, Ec≫1, indicates that cancer cells will invade the adipose tissue, whereas for Ec≪1, the cancer cells and adipocytes remain demixed. We also show that constraints on adipocyte positions by the ECM decrease At relative to that obtained for unconstrained adipocytes. Finally, spatial heterogeneity in structural and mechanical properties of the adipocytes in the presence of ECM impedes invasion relative to adipose tissue with uniform properties.

6.
Phys Rev E ; 109(3-1): 034406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632799

RESUMO

Previous studies have shown that the interiors of proteins are densely packed, reaching packing fractions that are as large as those found for static packings of individual amino-acid-shaped particles. How can the interiors of proteins take on such high packing fractions given that amino acids are connected by peptide bonds and many amino acids are hydrophobic with attractive interactions? We investigate this question by comparing the structural and mechanical properties of collapsed attractive disk-shaped bead-spring polymers to those of three reference systems: static packings of repulsive disks, of attractive disks, and of repulsive disk-shaped bead-spring polymers. We show that the attractive systems quenched to temperatures below the glass transition T≪T_{g} and static packings of both repulsive disks and bead-spring polymers possess similar interior packing fractions. Previous studies have shown that static packings of repulsive disks are isostatic at jamming onset, i.e., the number of interparticle contacts N_{c} matches the number of degrees of freedom, which strongly influences their mechanical properties. We find that repulsive polymer packings are hypostatic at jamming onset (i.e., with fewer contacts than degrees of freedom) but are effectively isostatic when including stabilizing quartic modes, which give rise to quartic scaling of the potential energy with displacements along these modes. While attractive disk and polymer packings are often considered hyperstatic with excess contacts over the isostatic number, we identify a definition for interparticle contacts for which they can also be considered as effectively isostatic. As a result, we show that the mechanical properties (e.g., scaling of the potential energy with excess contact number and low-frequency contribution to the density of vibrational modes) of weakly attractive disk and polymer packings are similar to those of isostatic repulsive disk and polymer packings. Our results demonstrate that static packings generated via attractive collapse or compression of repulsive particles possess similar structural and mechanical properties.

7.
mBio ; 15(4): e0332223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426789

RESUMO

Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the wild-type (WT) strain, with MotAB stators produced at an approximately 40-fold higher level than MotCD stators. However, utilization of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily utilized at low viscosities. Importantly, we find that cells with MotCD stators are ~10× more likely to have an active motor compared to cells uses the MotAB stators. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa, transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator utilization. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the "jamming transition" in active granular matter.IMPORTANCEIt is now known that there exist multifactorial influences on swarming motility for P. aeruginosa, but it is not clear precisely why stator selection in the flagellum motor is so important. We show differential production and utilization of the stators. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies: the fraction of flagellum-active cells in a population on average with MotCD is active ~10× more often than with MotAB. What emerges from this complex landscape of stator utilization and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility and how the stators potentially relate to surface sensing circuitry.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Biofilmes , Movimento , Flagelos/genética
8.
ACS Omega ; 9(9): 10286-10298, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463266

RESUMO

The mechanical properties of CuTi alloys have been characterized extensively through experimental studies. However, a detailed understanding of why the strength of Cu increases after a small fraction of Ti atoms are added to the alloy is still missing. In this work, we address this question using density functional theory (DFT) and molecular dynamics (MD) simulations with the modified embedded atom method (MEAM) interatomic potentials. First, we performed calculations of the uniaxial tension deformations of small bicrystalline Cu cells using DFT static simulations. We then carried out uniaxial tension deformations on much larger bicrystalline and polycrystalline Cu cells by using MEAM MD simulations. In bicrystalline Cu, the inclusion of Ti increases the grain boundary separation energy and the maximum tensile stress. The DFT calculations demonstrate that the increase in the tensile stress can be attributed to an increase in the local charge density arising from Ti. MEAM simulations in larger bicrystalline systems have shown that increasing the Ti concentration decreases the density of the stacking faults. This observation is enhanced in polycrystalline Cu, where the addition of Ti atoms, even at concentrations as low as 1.5 atomic (at.) %, increases the yield strength and elastic modulus of the material compared to pure Cu. Under uniaxial tensile loading, the addition of small amounts of Ti hinders the formation of partial Shockley dislocations in the grain boundaries of Cu, leading to a reduced level of local deformation. These results shed light on the role of Ti in determining the mechanical properties of polycrystalline Cu and enable the engineering of grain boundaries and the inclusion of Ti to improve degradation resistance.

9.
Phys Rev E ; 108(3-1): 034901, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849141

RESUMO

Jammed packings of granular materials display complex mechanical response. For example, the ensemble-averaged shear modulus 〈G〉 increases as a power law in pressure p for static packings of soft spherical particles that can rearrange during compression. We seek to design granular materials with shear moduli that can either increase or decrease with pressure without particle rearrangements even in the large-system limit. To do this, we construct tessellated granular metamaterials by joining multiple particle-filled cells together. We focus on cells that contain a small number of bidisperse disks in two dimensions. We first study the mechanical properties of individual disk-filled cells with three types of boundaries: periodic boundary conditions (PBC), fixed-length walls (FXW), and flexible walls (FLW). Hypostatic jammed packings are found for cells with FLW, but not in cells with PBC and FXW, and they are stabilized by quartic modes of the dynamical matrix. The shear modulus of a single cell depends linearly on p. We find that the slope of the shear modulus with pressure λ_{c}<0 for all packings in single cells with PBC where the number of particles per cell N≥6. In contrast, single cells with FXW and FLW can possess λ_{c}>0, as well as λ_{c}<0, for N≤16. We show that we can force the mechanical properties of multicell granular metamaterials to possess those of single cells by constraining the end points of the outer walls and enforcing an affine shear response. These studies demonstrate that tessellated granular metamaterials provide a platform for the design of soft materials with specified mechanical properties.

10.
Phys Rev E ; 107(5-1): 054903, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329065

RESUMO

Strain-controlled isotropic compression gives rise to jammed packings of repulsive, frictionless disks with either positive or negative global shear moduli. We carry out computational studies to understand the contributions of the negative shear moduli to the mechanical response of jammed disk packings. We first decompose the ensemble-averaged, global shear modulus as 〈G〉=(1-F_{-})〈G_{+}〉+F_{-}〈G_{-}〉, where F_{-} is the fraction of jammed packings with negative shear moduli and 〈G_{+}〉 and 〈G_{-}〉 are the average values from packings with positive and negative moduli, respectively. We show that 〈G_{+}〉 and 〈|G_{-}|〉 obey different power-law scaling relations above and below pN^{2}∼1. For pN^{2}>1, both 〈G_{+}〉N and 〈|G_{-}|〉N∼(pN^{2})^{ß}, where ß∼0.5 for repulsive linear spring interactions. Despite this, 〈G〉N∼(pN^{2})^{ß^{'}} with ß^{'}≳0.5 due to the contributions from packings with negative shear moduli. We show further that the probability distribution of global shear moduli P(G) collapses at fixed pN^{2} and different values of p and N. We calculate analytically that P(G) is a Γ distribution in the pN^{2}≪1 limit. As pN^{2} increases, the skewness of P(G) decreases and P(G) becomes a skew-normal distribution with negative skewness in the pN^{2}≫1 limit. We also partition jammed disk packings into subsystems using Delaunay triangulation of the disk centers to calculate local shear moduli. We show that the local shear moduli defined from groups of adjacent triangles can be negative even when G>0. The spatial correlation function of local shear moduli C(r[over ⃗]) displays weak correlations for pn_{sub}^{2}<10^{-2}, where n_{sub} is the number of particles within each subsystem. However, C(r[over ⃗]) begins to develop long-ranged spatial correlations with fourfold angular symmetry for pn_{sub}^{2}≳10^{-2}.

11.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090636

RESUMO

Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the WT strain, with MotAB stators produced ∼40-fold more than MotCD stators. However, recruitment of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily recruited at low viscosities. Importantly, we find that cells with MotCD stators are ∼10x more likely to have an active motor compared to cells without, so wild-type, WT, populations are intrinsically heterogeneous and not reducible to MotAB-dominant or MotCD-dominant behavior. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa , transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator recruitment. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the 'jamming transition' in active granular matter. Importance: After extensive study, it is now known that there exist multifactorial influences on swarming motility in P. aeruginosa , but it is not clear precisely why stator selection in the flagellum motor is so important or how this process is collectively initiated or arrested. Here, we show that for P. aeruginosa PA14, MotAB stators are produced ∼40-fold more than MotCD stators, but recruitment of MotCD over MotAB stators requires higher liquid viscosities. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies, the fraction of flagellum-active cells in a population on average, with MotCD active ∼10x more often than MotAB. What emerges from this complex landscape of stator recruitment and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility, and how they potentially relate to surface sensing circuitry.

12.
FASEB Bioadv ; 5(1): 1-12, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36643898

RESUMO

The Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University brings together Ph.D. students from the physical, engineering, and biological sciences. The main goals of this program are for students to become comfortable working in an interdisciplinary and collaborative research environment and adept at communicating with scientists and nonscientists. To fill a student-identified learning gap in engaging in inclusive discussions, IGPPEB students developed a communication workshop to improve skills in visual engagement, citing specific content, constructive conversation entrances, and encouragement of peers. Based on short- and long-term assessment of the workshop, 100% of students reported that it should be offered to future cohorts and 63% of students perceived it to be personally helpful. Additionally, 92% of participants reported using one or more of the core skills beyond the course, with skills in "Encouraging peers" and "Constructive conversation entrances" rated the highest in perceived improvement. Based on the highest average rating of 76 ± 24 (on a scale of 0-100), students agreed that the workshop made them feel more welcome in the IGPPEB community. With a rating of 68 ± 13, they also agreed that the workshop had a positive impact on their graduate school experience. Participants provided suggestions for future improvements, such as increasing student involvement in leading discussions of course material. This study demonstrates that a student-led workshop can improve perceived discussion skills and build community across an interdisciplinary program in the sciences.

13.
J R Soc Interface ; 19(197): 20220602, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36475391

RESUMO

The spongy mesophyll is a complex, porous tissue found in plant leaves that enables carbon capture and provides mechanical stability. Unlike many other biological tissues, which remain confluent throughout development, the spongy mesophyll must develop from an initially confluent tissue into a tortuous network of cells with a large proportion of intercellular airspace. How the airspace in the spongy mesophyll develops while the tissue remains mechanically stable is unknown. Here, we use computer simulations of deformable polygons to develop a purely mechanical model for the development of the spongy mesophyll tissue. By stipulating that cell wall growth and remodelling occurs only near void space, our computational model is able to recapitulate spongy mesophyll development observed in Arabidopsis thaliana leaves. We find that robust generation of pore space in the spongy mesophyll requires a balance of cell growth, adhesion, stiffness and tissue pressure to ensure cell networks become porous yet maintain mechanical stability. The success of this mechanical model of morphogenesis suggests that simple physical principles can coordinate and drive the development of complex plant tissues like the spongy mesophyll.

14.
Soft Matter ; 18(42): 8071-8086, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36218162

RESUMO

Numerous experimental and computational studies show that continuous hopper flows of granular materials obey the Beverloo equation that relates the volume flow rate Q and the orifice width w: Q ∼ (w/σavg - k)ß, where σavg is the average particle diameter, kσavg is an offset where Q ∼ 0, the power-law scaling exponent ß = d - 1/2, and d is the spatial dimension. Recent studies of hopper flows of deformable particles in different background fluids suggest that the particle stiffness and dissipation mechanism can also strongly affect the power-law scaling exponent ß. We carry out computational studies of hopper flows of deformable particles with both kinetic friction and background fluid dissipation in two and three dimensions. We show that the exponent ß varies continuously with the ratio of the viscous drag to the kinetic friction coefficient, λ = ζ/µ. ß = d - 1/2 in the λ → 0 limit and d - 3/2 in the λ → ∞ limit, with a midpoint λc that depends on the hopper opening angle θw. We also characterize the spatial structure of the flows and associate changes in spatial structure of the hopper flows to changes in the exponent ß. The offset k increases with particle stiffness until k ∼ kmax in the hard-particle limit, where kmax ∼ 3.5 is larger for λ → ∞ compared to that for λ → 0. Finally, we show that the simulations of hopper flows of deformable particles in the λ → ∞ limit recapitulate the experimental results for quasi-2D hopper flows of oil droplets in water.

15.
Protein Sci ; 31(8): e4373, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35900019

RESUMO

Numerous studies have investigated the differences and similarities between protein structures determined by solution NMR spectroscopy and those determined by X-ray crystallography. A fundamental question is whether any observed differences are due to differing methodologies or to differences in the behavior of proteins in solution versus in the crystalline state. Here, we compare the properties of the hydrophobic cores of high-resolution protein crystal structures and those in NMR structures, determined using increasing numbers and types of restraints. Prior studies have reported that many NMR structures have denser cores compared with those of high-resolution X-ray crystal structures. Our current work investigates this result in more detail and finds that these NMR structures tend to violate basic features of protein stereochemistry, such as small non-bonded atomic overlaps and few Ramachandran and sidechain dihedral angle outliers. We find that NMR structures solved with more restraints, and which do not significantly violate stereochemistry, have hydrophobic cores that have a similar size and packing fraction as their counterparts determined by X-ray crystallography at high resolution. These results lead us to conclude that, at least regarding the core packing properties, high-quality structures determined by NMR and X-ray crystallography are the same, and the differences reported earlier are most likely a consequence of methodology, rather than fundamental differences between the protein in the two different environments.


Assuntos
Proteínas , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas/química , Raios X
16.
Soft Matter ; 18(19): 3815, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506750

RESUMO

Correction for 'The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions' by Dong Wang et al., Soft Matter, 2021, 17, 9901-9915, DOI: 10.1039/D1SM01228B.

17.
Soft Matter ; 17(43): 9901-9915, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34697616

RESUMO

We investigate the structural, vibrational, and mechanical properties of jammed packings of deformable particles with shape degrees of freedom in three dimensions (3D). Each 3D deformable particle is modeled as a surface-triangulated polyhedron, with spherical vertices whose positions are determined by a shape-energy function with terms that constrain the particle surface area, volume, and curvature, and prevent interparticle overlap. We show that jammed packings of deformable particles without bending energy possess low-frequency, quartic vibrational modes, whose number decreases with increasing asphericity and matches the number of missing contacts relative to the isostatic value. In contrast, jammed packings of deformable particles with non-zero bending energy are isostatic in 3D, with no quartic modes. We find that the contributions to the eigenmodes of the dynamical matrix from the shape degrees of freedom are significant over the full range of frequency and shape parameters for particles with zero bending energy. We further show that the ensemble-averaged shear modulus 〈G〉 scales with pressure P as 〈G〉 ∼ Pß, with ß ≈ 0.75 for jammed packings of deformable particles with zero bending energy. In contrast, ß ≈ 0.5 for packings of deformable particles with non-zero bending energy, which matches the value for jammed packings of soft, spherical particles with fixed shape. These studies underscore the importance of incorporating particle deformability and shape change when modeling the properties of jammed soft materials.

18.
Soft Matter ; 17(38): 8612-8623, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34545381

RESUMO

We investigate the non-affine displacement fields that occur in two-dimensional Lennard-Jones models of metallic glasses subjected to athermal, quasistatic simple shear (AQS). During AQS, the shear stress versus strain displays continuous quasi-elastic segments punctuated by rapid drops in shear stress, which correspond to atomic rearrangement events. We capture all information concerning the atomic motion during the quasi-elastic segments and shear stress drops by performing Delaunay triangularizations and tracking the deformation gradient tensor Fα associated with each triangle α. To understand the spatio-temporal evolution of the displacement fields during shear stress drops, we calculate Fα along minimal energy paths from the mechanically stable configuration immediately before to that after the stress drop. We find that quadrupolar displacement fields form and dissipate both during the quasi-elastic segments and shear stress drops. We then perform local perturbations (rotation, dilation, simple and pure shear) to single triangles and measure the resulting displacement fields. We find that local pure shear deformations of single triangles give rise to mostly quadrupolar displacement fields, and thus pure shear strain is the primary type of local strain that is activated by bulk, athermal quasistatic simple shear. Other local perturbations, e.g. rotations, dilations, and simple shear of single triangles, give rise to vortex-like and dipolar displacement fields that are not frequently activated by bulk AQS. These results provide fundamental insights into the non-affine atomic motion that occurs in driven, glassy materials.

19.
Phys Rev E ; 104(1-1): 014901, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412339

RESUMO

We investigate the mechanical response of jammed packings of circulo-lines in two spatial dimensions, interacting via purely repulsive, linear spring forces, as a function of pressure P during athermal, quasistatic isotropic compression. The surface of a circulo-line is defined as the collection of points that is equidistant to a line; circulo-lines are composed of a rectangular central shaft with two semicircular end caps. Prior work has shown that the ensemble-averaged shear modulus for jammed disk packings scales as a power law, 〈G(P)〉∼P^{ß}, with ß∼0.5, over a wide range of pressure. For packings of circulo-lines, we also find robust power-law scaling of 〈G(P)〉 over the same range of pressure for aspect ratios R≳1.2. However, the power-law scaling exponent ß∼0.8-0.9 is much larger than that for jammed disk packings. To understand the origin of this behavior, we decompose 〈G〉 into separate contributions from geometrical families, G_{f}, and from changes in the interparticle contact network, G_{r}, such that 〈G〉=〈G_{f}〉+〈G_{r}〉. We show that the shear modulus for low-pressure geometrical families for jammed packings of circulo-lines can both increase and decrease with pressure, whereas the shear modulus for low-pressure geometrical families for jammed disk packings only decreases with pressure. For this reason, the geometrical family contribution 〈G_{f}〉 is much larger for jammed packings of circulo-lines than for jammed disk packings at finite pressure, causing the increase in the power-law scaling exponent for 〈G(P)〉.

20.
Nat Commun ; 12(1): 3768, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145267

RESUMO

Functional particles that respond to external stimuli are spurring technological evolution across various disciplines. While large-scale production of functional particles is needed for their use in real-life applications, precise control over particle shapes and directional properties has remained elusive for high-throughput processes. We developed a high-throughput emulsion-based process that exploits rapid vitrification of a thixotropic medium to manufacture diverse functional particles in large quantities. The vitrified medium renders stationary emulsion droplets that preserve their shape and size during solidification, and energetic fields can be applied to build programmed anisotropy into the particles. We showcase mass-production of several functional particles, including low-melting point metallic particles, self-propelling Janus particles, and unidirectionally-magnetized robotic particles, via this static-state particle fabrication process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...