Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 10(12): 1053-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26436566

RESUMO

Graphene and other two-dimensional materials offer a new class of ultrathin membranes that can have atomically defined nanopores with diameters approaching those of hydrated ions. These nanopores have the smallest possible pore volumes of any ion channel, which, due to ionic dehydration and electrokinetic effects, places them in a novel transport regime and allows membranes to be created that combine selective ionic transport with ultimate permeance and could lead to separations and sensing applications. However, experimental characterization and understanding of sub-continuum ionic transport in nanopores below 2 nm is limited. Here we show that isolated sub-2 nm pores in graphene exhibit, in contrast to larger pores, diverse transport behaviours consistent with ion transport over a free-energy barrier arising from ion dehydration and electrostatic interactions. Current-voltage measurements reveal that the conductance of graphene nanopores spans three orders of magnitude and that they display distinct linear, voltage-activated or rectified current-voltage characteristics and different cation-selectivity profiles. In rare cases, rapid, voltage-dependent stochastic switching is observed, consistent with the presence of a dissociable group in the pore vicinity. A modified Nernst-Planck model incorporating ion hydration and electrostatic effects quantitatively matches the observed behaviours.

2.
Nano Lett ; 15(5): 3254-60, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25915708

RESUMO

Monolayer nanoporous graphene represents an ideal membrane for molecular separations, but its practical realization is impeded by leakage through defects in the ultrathin graphene. Here, we report a multiscale leakage-sealing process that exploits the nonpolar nature and impermeability of pristine graphene to selectively block defects, resulting in a centimeter-scale membrane that can separate two fluid reservoirs by an atomically thin layer of graphene. After introducing subnanometer pores in graphene, the membrane exhibited rejection of multivalent ions and small molecules and water flux consistent with prior molecular dynamics simulations. The results indicate the feasibility of constructing defect-tolerant monolayer graphene membranes for nanofiltration, desalination, and other separation processes.


Assuntos
Grafite/química , Membranas/química , Água/química , Íons/química , Membranas/ultraestrutura , Simulação de Dinâmica Molecular , Nanoporos/ultraestrutura
3.
Nano Lett ; 14(3): 1234-41, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24490698

RESUMO

We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 10(12) cm(-2), while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.

4.
ACS Nano ; 8(1): 841-9, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24397398

RESUMO

Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.

5.
ACS Nano ; 6(11): 10130-8, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23030691

RESUMO

We report graphene composite membranes with nominal areas more than 25 mm(2) fabricated by transfer of a single layer of CVD graphene onto a porous polycarbonate substrate. A combination of pressure-driven and diffusive transport measurements provides evidence of size-selective transport of molecules through the membrane, which is attributed to the low-frequency occurrence of intrinsic 1-15 nm diameter pores in the CVD graphene. Our results present the first step toward the realization of practical membranes that use graphene as the selective material.


Assuntos
Grafite/química , Membranas Artificiais , Porosidade , Gases/química , Teste de Materiais , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...