Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38539894

RESUMO

The toxicity of ionizing radiation limits its effectiveness in the treatment of pancreatic ductal adenocarcinoma. Pharmacologic ascorbate (P-AscH-) has been shown to radiosensitize pancreatic cancer cells while simultaneously radioprotecting normal cells. We hypothesize that P-AscH- protects the small intestine while radiosensitizing pancreatic cancer cells partially through an oxidative stress mechanism. Duodenal samples from pancreaticoduodenectomy specimens of patients who underwent radio-chemotherapy ± P-AscH- and mouse tumor and jejunal samples treated with radiation ± P-AscH- were evaluated. Pancreatic cancer and non-tumorigenic cells were treated with radiation ± P-AscH- to assess lipid peroxidation. To determine the mechanism, pancreatic cancer cells were treated with selenomethionine or RSL3, an inhibitor of glutathione peroxidase 4 (GPx4). Radiation-induced decreases in villi length and increases in 4-HNE immunofluorescence were reversed with P-AscH- in human duodenum. In vivo, radiation-induced decreases in villi length and increased collagen deposition were reversed in P-AscH--treated jejunal samples. P-AscH- and radiation increased BODIPY oxidation in pancreatic cancer cells but not in non-tumorigenic cells. Selenomethionine increased GPx4 protein and activity in pancreatic cancer and reversed P-AscH--induced toxicity and lipid peroxidation. RSL3 treatment inhibited GPx4 activity and increased lipid peroxidation. Differences in oxidative stress may play a role in radioprotecting normal cells while radiosensitizing pancreatic cancer cells when treated with P-AscH-.

2.
Radiat Res ; 200(5): 444-455, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758045

RESUMO

Pharmacological ascorbate (P-AscH-, high dose, intravenous vitamin C) preferentially sensitizes human pancreas ductal adenocarcinoma (PDAC) cells to radiation-induced toxicity compared to non-tumorigenic epithelial cells. Radiation-induced G2-checkpoint activation contributes to the resistance of cancer cells to DNA damage induced toxicity. We hypothesized that P-AscH- induced radio-sensitization of PDAC cells is mediated by perturbations in the radiation induced activation of the G2-checkpoint pathway. Both non-tumorigenic pancreatic ductal epithelial and PDAC cells display decreased clonogenic survival and increased doubling times after radiation treatment. In contrast, the addition of P-AscH- to radiation increases clonogenic survival and decreases the doubling time of non-tumorigenic epithelial cells but decreasing clonogenic survival and increasing the doubling time of PDAC cells. Results from the mitotic index and propidium iodide assays showed that while the P-AscH- treatments did not affect radiation-induced G2-checkpoint activation, it enhanced G2-accumulation. The addition of catalase reverses the increases in G2-accumulation, indicating a peroxide-mediated mechanism. In addition, P-AscH- treatment of PDAC cells suppresses radiation-induced accumulation of cyclin B1 protein levels. Both translational and post-translational pathways appear to regulate cyclin B1 protein levels after the combination treatment of PDAC cells with P-AscH- and radiation. The protein changes seen are reversed by the addition of catalase suggesting that hydrogen peroxide mediates P-AscH- induced radiation sensitization of PDAC cells by enhancing G2-accumulation and reducing cyclin B1 protein levels.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Catalase/metabolismo , Catalase/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/uso terapêutico , Ciclina B1 , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas
3.
Antioxidants (Basel) ; 12(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37759986

RESUMO

Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) enzymes produce hydrogen peroxide (H2O2) in normal pancreatic tissue but are silenced in pancreatic cancer (PDAC). Treatment of PDAC with pharmacologic ascorbate (P-AscH-, intravenous, high dose vitamin C) increases DUOX expression. We hypothesized that inhibiting DNMT may act synergistically with P-AscH- to further increase DUOX expression and cytotoxicity of PDAC. PDAC cells demonstrated dose-dependent increases in DUOX mRNA and protein expression when treated with DNMT inhibitors. PDAC cells treated with P-AscH- + DNMT inhibitors demonstrated increased DUOX expression, increased intracellular oxidation, and increased cytotoxicity in vitro and in vivo compared to either treatment alone. These findings suggest a potential therapeutic, epigenetic mechanism to treat PDAC.

4.
Free Radic Biol Med ; 204: 108-117, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137343

RESUMO

Pharmacological ascorbate (P-AscH-; high dose given intravenously) generates H2O2 that is selectively cytotoxic to cancer compared to normal cells. The RAS-RAF-ERK1/2 is a major signaling pathway in cancers carrying RAS mutations and is known to be activated by H2O2. Activated ERK1/2 also phosphorylates the GTPase dynamin-related protein (Drp1), which then stimulates mitochondrial fission. Although early generation of H2O2 leads to cytotoxicity of cancer cells, we hypothesized that sustained increases in H2O2 activate ERK-Drp1 signaling, leading to an adaptive response; inhibition of this pathway would enhance the toxicity of P-AscH-. Increases in phosphorylated ERK and Drp1 induced by P-AscH- were reversed with genetic and pharmacological inhibitors of ERK and Drp1, as well as in cells lacking functional mitochondria. P-AscH- increased Drp1 colocalization to mitochondria, decreased mitochondrial volume, increased disconnected components, and decreased mitochondrial length, suggesting an increase in mitochondrial fission 48 h after treatment with P-AscH-. P-AscH- decreased clonogenic survival; this was enhanced by genetic and pharmacological inhibition of both ERK and Drp1. In murine tumor xenografts, the combination of P-AscH- and pharmacological inhibition of Drp1 increased overall survival. These results suggest that P-AscH- induces sustained changes in mitochondria, through activation of the ERK/Drp1 signaling pathway, an adaptive response. Inhibition of this pathway enhanced the toxicity P-AscH- to cancer cells.


Assuntos
Antineoplásicos , Ácido Ascórbico , Mitocôndrias , Dinâmica Mitocondrial , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Análise de Sobrevida , Feminino
5.
Sci Rep ; 12(1): 22521, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581766

RESUMO

At pharmacological levels, ascorbate (P-AscH-) acts as a pro-oxidant by generating H2O2, depleting ATP in sensitive cells leading to cell death. The aim of this study was to determine the role of ATP production by oxidative phosphorylation or glycolysis in mechanisms of resistance to P-AscH-induced cell death. Pancreatic cancer cells were used to generate ρ0 cells by mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase or Herpes Simplex Virus protein. The ρ0 phenotype was confirmed by probing for mitochondrial DNA, mitochondrial DNA-encoded cytochrome c oxidase subunit 2, and monitoring the rate of oxygen consumption. In ρ0 cells, glycolysis accounted for 100% of ATP production as there was no mitochondrial oxygen consumption. Even though the activities of H2O2-removing antioxidant enzymes were similar in both the parental and ρ0 clones, P-AscH- -induced clonogenic cell death in ρ0 cells showed more resistance than the parental cell line. In addition, P-AscH- induced more DNA damage and more consumption of NAD+ and greater decreases in the production of ATP in the parental cell line compared to the ρ0 cells. Thus, cancer cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to P-AscH- compared with cells that are glycolysis-dependent.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Neoplasias Pancreáticas/metabolismo , Antioxidantes/uso terapêutico , Antineoplásicos/uso terapêutico , Trifosfato de Adenosina
6.
Pancreas ; 51(6): 684-693, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099493

RESUMO

OBJECTIVES: Pharmacological ascorbate (P-AscH - , high-dose, intravenous vitamin C) has shown promise as an adjuvant therapy for pancreatic ductal adenocarcinoma (PDAC) treatment. The objective of this study was to determine the effects of P-AscH - when combined with PDAC chemotherapies. METHODS: Clonogenic survival, combination indices, and DNA damage were determined in human PDAC cell lines treated with P-AscH - in combination with 5-fluorouracil, paclitaxel, or FOLFIRINOX (combination of leucovorin, 5-fluorouracil, irinotecan, oxaliplatin). Tumor volume changes, overall survival, blood analysis, and plasma ascorbate concentration were determined in vivo in mice treated with P-AscH - with or without FOLFIRINOX. RESULTS: P-AscH - combined with 5-fluorouracil, paclitaxel, or FOLFIRINOX significantly reduced clonogenic survival in vitro. The DNA damage, measured by γH2AX protein expression, was increased after treatment with P-AscH - , FOLFIRINOX, and their combination. In vivo, tumor growth rate was significantly reduced by P-AscH - , FOLFIRINOX, and their combination. Overall survival was significantly increased by the combination of P-AscH - and FOLFIRINOX. Treatment with P-AscH - increased red blood cell and hemoglobin values but had no effect on white blood cell counts. Plasma ascorbate concentrations were significantly elevated in mice treated with P-AscH - with or without FOLFIRINOX. CONCLUSIONS: The addition of P-AscH - to standard of care chemotherapy has the potential to be an effective adjuvant for PDAC treatment.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Fluoruracila , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Camundongos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Paclitaxel , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
7.
Antioxidants (Basel) ; 11(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35624835

RESUMO

Pancreatic cancer accounts for nearly one fourth of all new cancers worldwide. Little progress in the development of novel or adjuvant therapies has been made over the past few decades and new approaches to the treatment of pancreatic cancer are desperately needed. Pharmacologic ascorbate (P-AscH-, high-dose, intravenous vitamin C) is being investigated in clinical trials as an adjunct to standard-of-care chemoradiation treatments. In vitro, P-AscH- has been shown to sensitize cancer cells to ionizing radiation in a manner that is dependent on the generation of H2O2 while simultaneously protecting normal tissue from radiation damage. There is renewed interest in Auranofin (Au), an FDA-approved medication utilized in the treatment of rheumatoid arthritis, as an anti-cancer agent. Au inhibits the thioredoxin antioxidant system, thus increasing the overall peroxide burden on cancer cells. In support of current literature demonstrating Au's effectiveness in breast, colon, lung, and ovarian cancer, we offer additional data that demonstrate the effectiveness of Au alone and in combination with P-AscH- and ionizing radiation in pancreatic cancer treatment. Combining P-AscH- and Au in the treatment of pancreatic cancer may confer multiple mechanisms to increase H2O2-dependent toxicity amongst cancer cells and provide a promising translatable avenue by which to enhance radiation effectiveness and improve patient outcomes.

8.
Antioxidants (Basel) ; 10(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34439467

RESUMO

Reactive oxygen species (ROS) are a normal byproduct of cellular metabolism and are required components in cell signaling and immune responses. However, an imbalance of ROS can lead to oxidative stress in various pathological states. Increases in oxidative stress are one of the hallmarks in cancer cells, which display an altered metabolism when compared to corresponding normal cells. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide anion (O2-) in the extracellular environment. By doing so, this enzyme provides the cell with a defense against oxidative damage by contributing to redox balance. Interestingly, EcSOD expression has been found to be decreased in a variety of cancers, and this loss of expression may contribute to the development and progression of malignancies. In addition, recent compounds can increase EcSOD activity and expression, which has the potential for altering this redox signaling and cellular proliferation. This review will explore the role that EcSOD expression plays in cancer in order to better understand its potential as a tool for the detection, predicted outcomes and potential treatment of malignancies.

9.
Oncotarget ; 12(9): 876-877, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33953841
10.
Antioxidants (Basel) ; 10(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923601

RESUMO

Pancreatic cancer cells (PDACs) are more susceptible to an oxidative insult than normal cells, resulting in greater cytotoxicity upon exposure to agents that increase pro-oxidant levels. Pharmacological ascorbate (P-AscH-), i.e., large amounts given intravenously (IV), generates significant fluxes of hydrogen peroxide (H2O2), resulting in the killing of PDACs but not normal cells. Recent studies have demonstrated that P-AscH- radio-sensitizes PDAC but is a radioprotector to normal cells and tissues. Several mechanisms have been hypothesized to explain the dual roles of P-AscH- in radiation-induced toxicity including the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), RelB, as well as changes in bioenergetic profiles. We have found that P-AscH- in conjunction with radiation increases Nrf2 in both cancer cells and normal cells. Although P-AscH- with radiation decreases RelB in cancer cells vs. normal cells, the knockout of RelB does not radio-sensitize PDACs. Cellular bioenergetic profiles demonstrate that P-AscH- with radiation increases the ATP demand/production rate (glycolytic and oxidative phosphorylation) in both PDACs and normal cells. Knocking out catalase results in P-AscH- radio-sensitization in PDACs. In a phase I trial where P-AscH- was included as an adjuvant to the standard of care, short-term survivors had higher catalase levels in tumor tissue, compared to long-term survivors. These data suggest that P-AscH- radio-sensitizes PDACs through increased peroxide flux. Catalase levels could be a possible indicator for how tumors will respond to P-AscH-.

11.
Sci Rep ; 10(1): 17649, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077776

RESUMO

Pharmacological ascorbate (P-AscH-, high-dose, intravenous vitamin C) is cytotoxic to tumor cells in doses achievable in humans. Phase I studies in pancreatic cancer (PDAC) utilizing P-AscH- have demonstrated increases in progression free survival, suggesting a reduction in metastatic disease burden. The purpose of this study was to determine the effects of P-AscH- on metastatic PDAC. Several in vitro and in vivo mechanisms involved in PDAC metastases were investigated following treatment with P-AscH-. Serum from PDAC patients in clinical trials with P-AscH- were tested for the presence and quantity of circulating tumor cell-derived nucleases. P-AscH- inhibited invasion, basement membrane degradation, decreased matrix metalloproteinase expression, as well as clonogenic survival and viability during exposure to fluid shear stress. In vivo, P-AscH- significantly decreased formation of ascites, tumor burden over time, circulating tumor cells, and hepatic metastases. Both in vitro and in vivo findings were reversed with the addition of catalase suggesting that the effect of P-AscH- on metastatic disease is mediated by hydrogen peroxide. Finally, P-AscH- decreased CTC-derived nucleases in subjects with stage IV PDAC in a phase I clinical trial. We conclude that P-AscH- attenuates the metastatic potential of PDAC and may prove to be effective for treating advanced disease.


Assuntos
Antineoplásicos/uso terapêutico , Ácido Ascórbico/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Peróxidos/metabolismo , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Nus , Metástase Neoplásica/tratamento farmacológico , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células Neoplásicas Circulantes/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
12.
J Biol Chem ; 295(20): 6946-6957, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32265301

RESUMO

The incidence of pancreatic cancer increases with age, suggesting that chronological aging is a significant risk factor for this disease. Fibroblasts are the major nonmalignant cell type in the stroma of human pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated whether the chronological aging of normal human fibroblasts (NHFs), a previously underappreciated area in pancreatic cancer research, influences the progression and therapeutic outcomes of PDAC. Results from experiments with murine xenografts and 2D and 3D co-cultures of NHFs and PDAC cells revealed that older NHFs stimulate proliferation of and confer resistance to radiation therapy of PDAC. MS-based metabolite analysis indicated that older NHFs have significantly increased arachidonic acid 12-lipoxygenase (ALOX12) expression and elevated levels of its mitogenic metabolite, 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-(S)-HETE) compared with their younger counterparts. In co-cultures with older rather than with younger NHFs, PDAC cells exhibited increases in mitogen-activated protein kinase signaling and cellular metabolism, as well as a lower oxidation state that correlated with their enhanced proliferation and resistance to radiation therapy. Expression of ALOX12 was found to be significantly lower in PDAC cell lines and tumor biopsies, suggesting that PDAC cells rely on a stromal supply of mitogens for their proliferative needs. Pharmacological (hydroxytyrosol) and molecular (siRNA) interventions of ALOX12 in older NHFs suppressed their ability to stimulate proliferation of PDAC cells. We conclude that chronological aging of NHFs contributes to PDAC progression and that ALOX12 and 12-(S)-HETE may be potential stromal targets for interventions that seek to halt progression and improve therapy outcomes.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Senescência Celular , Ácidos Hidroxieicosatetraenoicos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Estromais/metabolismo , Células Estromais/patologia
13.
Cancer Res ; 80(7): 1401-1413, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32041838

RESUMO

Pharmacologic ascorbate treatment (P-AscH-, high-dose, intravenous vitamin C) results in a transient short-term increase in the flux of hydrogen peroxide that is preferentially cytotoxic to cancer cells versus normal cells. This study examines whether an increase in hydrogen peroxide is sustained posttreatment and potential mechanisms involved in this process. Cellular bioenergetic profiling following treatment with P-AscH- was examined in tumorigenic and nontumorigenic cells. P-AscH- resulted in sustained increases in the rate of cellular oxygen consumption (OCR) and reactive oxygen species (ROS) in tumor cells, with no changes in nontumorigenic cells. Sources for this increase in ROS and OCR were DUOX 1 and 2, which are silenced in pancreatic ductal adenocarcinoma, but upregulated with P-AscH- treatment. An inducible catalase system, to test causality for the role of hydrogen peroxide, reversed the P-AscH--induced increases in DUOX, whereas DUOX inhibition partially rescued P-AscH--induced toxicity. In addition, DUOX was significantly downregulated in pancreatic cancer specimens compared with normal pancreas tissues. Together, these results suggest that P-AscH--induced toxicity may be enhanced by late metabolic shifts in tumor cells, resulting in a feed-forward mechanism for generation of hydrogen peroxide and induction of metabolic stress through enhanced DUOX expression and rate of oxygen consumption. SIGNIFICANCE: A high dose of vitamin C, in addition to delivering an acute exposure of H2O2 to tumor cells, activates DUOX in pancreatic cancer cells, which provide sustained production of H2O2.


Assuntos
Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/terapia , Oxidases Duais/metabolismo , Peróxido de Hidrogênio/metabolismo , Neoplasias Pancreáticas/terapia , Administração Intravenosa , Animais , Ácido Ascórbico/uso terapêutico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Relação Dose-Resposta a Droga , Regulação para Baixo/genética , Oxidases Duais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreaticoduodenectomia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Radiat Res ; 191(1): 43-51, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376411

RESUMO

Pharmacologic ascorbate (P-AscH-) is emerging as a promising adjuvant for advanced pancreatic cancer. P-AscH- generates hydrogen peroxide (H2O2), leading to selective cancer cell cytotoxicity. Catalytic manganoporphyrins, such as MnT4MPyP, can increase the rate of oxidation of P-AscH-, thereby increasing the flux of H2O2, resulting in increased cytotoxicity. We hypothesized that a multimodal treatment approach, utilizing a combination of P-AscH-, ionizing radiation and MnT4MPyP, would result in significant flux of H2O2 and pancreatic cancer cytotoxicity. P-AscH- with MnT4MPyP increased the rate of oxidation of P-AscH- and produced radiosensitization in all pancreatic cancer cell lines tested. Three-dimensional (3D) cell cultures demonstrated resistance to P-AscH-, radiation or MnT4MPyP treatments alone; however, combined treatment with P-AscH- and MnT4MPyP resulted in the inhibition of tumor growth, particularly when also combined with radiation. In vivo experiments using a murine model demonstrated an increased rate of ascorbate oxidation when combinations of P-AscH- with MnT4MPyP were given, thus acting as a radiosensitizer. The translational potential was demonstrated by measuring increased ascorbate oxidation ex vivo, whereby MnT4MPyP was added exogenously to plasma samples from patients treated with P-AscH- and radiation. Combination treatment utilizing P-AscH-, manganoporphyrin and radiation results in significant cytotoxicity secondary to enhanced ascorbate oxidation and an increased flux of H2O2. This multimodal approach has the potential to be an effective treatment for pancreatic ductal adenocarcinoma.


Assuntos
Ácido Ascórbico/metabolismo , Neoplasias Pancreáticas/metabolismo , Radiossensibilizantes/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Metaloporfirinas/uso terapêutico , Oxirredução , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia
15.
Cancer Res ; 78(24): 6838-6851, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30254147

RESUMO

: Chemoradiation therapy is the mainstay for treatment of locally advanced, borderline resectable pancreatic cancer. Pharmacologic ascorbate (P-AscH-, i.e., intravenous infusions of ascorbic acid, vitamin C), but not oral ascorbate, produces high plasma concentrations capable of selective cytotoxicity to tumor cells. In doses achievable in humans, P-AscH- decreases the viability and proliferative capacity of pancreatic cancer via a hydrogen peroxide (H2O2)-mediated mechanism. In this study, we demonstrate that P-AscH- radiosensitizes pancreatic cancer cells but inhibits radiation-induced damage to normal cells. Specifically, radiation-induced decreases in clonogenic survival and double-stranded DNA breaks in tumor cells, but not in normal cells, were enhanced by P-AscH-, while radiation-induced intestinal damage, collagen deposition, and oxidative stress were also reduced with P-AscH- in normal tissue. We also report on our first-in-human phase I trial that infused P-AscH- during the radiotherapy "beam on." Specifically, treatment with P-AscH- increased median overall survival compared with our institutional average (21.7 vs. 12.7 months, P = 0.08) and the E4201 trial (21.7 vs. 11.1 months). Progression-free survival in P-AscH--treated subjects was also greater than our institutional average (13.7 vs. 4.6 months, P < 0.05) and the E4201 trial (6.0 months). Results indicated that P-AscH- in combination with gemcitabine and radiotherapy for locally advanced pancreatic adenocarcinoma is safe and well tolerated with suggestions of efficacy. Because of the potential effect size and minimal toxicity, our findings suggest that investigation of P-AscH- efficacy is warranted in a phase II clinical trial. SIGNIFICANCE: These findings demonstrate that pharmacologic ascorbate enhances pancreatic tumor cell radiation cytotoxicity in addition to offering potential protection from radiation damage in normal surrounding tissue, making it an optimal agent for improving treatment of locally advanced pancreatic adenocarcinoma.


Assuntos
Ácido Ascórbico/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colágeno/metabolismo , Dano ao DNA , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Intervalo Livre de Doença , Feminino , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Estresse Oxidativo , Tolerância a Radiação , Radioterapia , Proteínas Recombinantes/metabolismo , Resultado do Tratamento , Gencitabina
16.
Radiat Res ; 189(5): 456-465, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29547353

RESUMO

Gastric adenocarcinoma most often presents at an advanced stage and overall five-year survival of ∼30%. Pharmacological ascorbate (high-dose IV ascorbate) has been proposed as a promising nontoxic adjuvant to standard radio-chemotherapies in several cancer types. In the current study, pharmacological ascorbate (0.5-2 m M) caused a dose-dependent decrease (70-85% at 2 m M) in clonogenic survival of gastric adenocarcinoma cells (AGS and MNK-45), but was relatively nontoxic to a small intestinal epithelial nonimmortalized human cell isolate (FHs 74 Int). The addition of pharmacological ascorbate (1 m M) to standard radio-chemotherapies [i.e., 5-FU (5 µ M); cisplatin (0.5 µ M); irinotecan (2.5 µ M); carboplatin (5 µ M); paclitaxel (2-4 n M); and X rays (1.8 Gy)] also potentiated gastric cancer clonogenic cell killing [additional decreases were noted with: ascorbate plus 5-FU/radiation (1%); ascorbate plus cisplatin/irinotecan (9-19%); and ascorbate plus paclitaxel/carboplatin (6-7%)]. The gastric cancer cell toxicity and chemosensitization seen with pharmacological ascorbate was dependent on H2O2 and the presence of catalytic metal ions. In addition, pharmacological ascorbate dosing resulted in a concentration-dependent decrease (64% at 20 m M, P ≤ 0.0001) in cancer cell invasion and migration that was inhibited by catalase. Finally, pharmacological ascorbate significantly increased the overall survival of mice with gastric cancer xenografts when used in combination with paclitaxel, carboplatin and radiation ( P = 0.019). These results demonstrate that pharmacological ascorbate is selectively cytotoxic to gastric adenocarcinoma cells (relative to normal intestinal epithelial cells) by a mechanism involving H2O2 and redox active metal ions. Furthermore, pharmacological ascorbate significantly enhances gastric cancer xenograft responses to radio-chemotherapy as well as inhibiting tumor cell migration and invasiveness. Overall, these results support the hypothesis that pharmacological ascorbate can be used as an adjuvant with standard-of-care radio-chemotherapies for the treatment of gastric adenocarcinomas.


Assuntos
Adenocarcinoma/terapia , Ácido Ascórbico/farmacologia , Quimiorradioterapia , Neoplasias Gástricas/terapia , Adenocarcinoma/patologia , Animais , Ácido Ascórbico/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Clin Exp Metastasis ; 35(1-2): 37-51, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396728

RESUMO

HIF-1α is a transcriptional regulator that functions in the adaptation of cells to hypoxic conditions; it strongly impacts the prognosis of patients with cancer. High-dose, intravenous, pharmacological ascorbate (P-AscH-), induces cytotoxicity and oxidative stress selectively in cancer cells by acting as a pro-drug for the delivery of hydrogen peroxide (H2O2); early clinical data suggest improved survival and inhibition of metastasis in patients being actively treated with P-AscH-. Previous studies have demonstrated that activation of HIF-1α is necessary for P-AscH- sensitivity. We hypothesized that pancreatic cancer (PDAC) progression and metastasis could be be targeted by P-AscH- via H2O2-mediated inhibition of HIF-1α stabilization. Our study demonstrates an oxygen- and prolyl hydroxylase-independent regulation of HIF-1α by P-AscH-. Additionally, P-AscH- decreased VEGF secretion in a dose-dependent manner that was reversible with catalase, consistent with an H2O2-mediated mechanism. Pharmacological and genetic manipulations of HIF-1α did not alter P-AscH--induced cytotoxicity. In vivo, P-AscH- inhibited tumor growth and VEGF expression. We conclude that P-AscH- suppresses the levels of HIF-1α protein in hypoxic conditions through a post-translational mechanism. These findings suggest potential new therapies specifically designed to inhibit the mechanisms that drive metastases as a part of PDAC treatment.


Assuntos
Adenocarcinoma/metabolismo , Ácido Ascórbico/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/patologia , Animais , Ácido Ascórbico/administração & dosagem , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Nus , Metástase Neoplásica , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/patologia , Prolil Hidroxilases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Biol Methods ; 5(3): e97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31453247

RESUMO

Metastatic disease is the leading cause of pancreatic ductal adenocarcinoma (PDAC) associated death. PDAC cells invade and enter the bloodstream early, before frank malignancy can be detected. Our objective was to develop an in vivo assay enabling the identification and quantification of circulating tumor cells (CTCs) from primary orthotopic PDAC tumors. Human PDAC cells expressing luciferase and green fluorescent protein were orthotopically injected into the pancreas of mice utilizing ultrasound guidance. Bioluminescent imaging was conducted to identify and track tumor growth. CTCs were then isolated and analyzed by flow cytometry to detect GFP-expressing cancer cells. Tumor growth as measured by bioluminescent imaging increased over time. The concentration of CTCs correlated with the strength of bioluminescent imaging signal. In addition, livers bearing macroscopic disease were harvested for further imaging under fluorescence stereomicroscopy and confocal microscopy, which confirmed the presence of metastases. This study represents an orthotopic animal model that reliably detects the presence of CTCs from PDAC. There is a positive correlation between the concentrations of CTCs with overall tumor burden.

19.
Redox Biol ; 5: 319-327, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26114584

RESUMO

Transforming growth factor ß-activated kinase 1 (TAK1) is critical for survival of many KRAS mutated colorectal cancer cells, and TAK1 inhibition with 5Z-7-oxozeaenol has been associated with oxidative stress leading to tumor cell killing. When SW 620 and HCT 116 human colon cancer cells were treated with 5µM 5Z-7-oxozeaenol, cell viability, growth, and clonogenic survival were significantly decreased. Consistent with TAK1 inhibition being causally related to thiol-mediated oxidative stress, 10mM N-acetylcysteine (NAC) partially reversed the growth inhibitory effects of 5Z-7-oxozeaenol. In addition, 5Z-7-oxozeaenol also increased steady-state levels of H2DCFDA oxidation as well as increased levels of total glutathione (GSH) and glutathione disulfide (GSSG). Interestingly, depletion of GSH using buthionine sulfoximine did not significantly potentiate 5Z-7-oxozeaenol toxicity in either cell line. In contrast, pre-treatment of cells with auranofin (Au) to inhibit thioredoxin reductase activity significantly increased levels of oxidized thioredoxin as well as sensitized cells to 5Z-7-oxozeaenol-induced growth inhibition and clonogenic cell killing. These results were confirmed in SW 620 murine xenografts, where treatment with 5Z-7-oxozeaenol or with Au plus 5Z-7-oxozeaenol significantly inhibited growth, with Au plus 5Z-7-oxozeaenol trending toward greater growth inhibition compared to 5Z-7-oxozeaenol alone. These results support the hypothesis that thiol-mediated oxidative stress is causally related to TAK1-induced colon cancer cell killing. In addition, these results support the hypothesis that thioredoxin metabolism is a critical target for enhancing colon cancer cell killing via TAK1 inhibition and could represent an effective therapeutic strategy in patients with these highly resistant tumors.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Tiorredoxinas/metabolismo , Proteínas ras/genética , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Auranofina/química , Auranofina/uso terapêutico , Auranofina/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Glutationa/metabolismo , Células HCT116 , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Camundongos Nus , Mutação , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Transplante Heterólogo , Zearalenona/análogos & derivados , Zearalenona/química , Zearalenona/uso terapêutico , Zearalenona/toxicidade , Proteínas ras/metabolismo
20.
Clin Cancer Res ; 21(7): 1741-51, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25634994

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDA) cells are known to produce excessive amounts of reactive oxygen species (ROS), particularly superoxide, which may contribute to the aggressive and refractory nature of this disease. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide in the extracellular environment. This study tests the hypothesis that EcSOD modulates PDA growth and invasion by modifying the redox balance in PDA. EXPERIMENTAL DESIGN: We evaluated the prognostic significance of EcSOD in a human tissue microarray (TMA) of patients with PDA. EcSOD overexpression was performed in PDA cell lines and animal models of disease. The impact of EcSOD on PDA cell lines was evaluated with Matrigel invasion in combination with a superoxide-specific SOD mimic and a nitric oxide synthase (NOS) inhibitor to determine the mechanism of action of EcSOD in PDA. RESULTS: Loss of EcSOD expression is a common event in PDA, which correlated with worse disease biology. Overexpression of EcSOD in PDA cell lines resulted in decreased invasiveness that appeared to be related to reactions of superoxide with nitric oxide. Pancreatic cancer xenografts overexpressing EcSOD also demonstrated slower growth and peritoneal metastasis. Overexpression of EcSOD or treatment with a superoxide-specific SOD mimic caused significant decreases in PDA cell invasive capacity. CONCLUSIONS: These results support the hypothesis that loss of EcSOD leads to increased reactions of superoxide with nitric oxide, which contributes to the invasive phenotype. These results allow for the speculation that superoxide dismutase mimetics might inhibit PDA progression in human clinical disease.


Assuntos
Carcinoma Ductal Pancreático/patologia , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Superóxido Dismutase/biossíntese , Animais , Western Blotting , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Fenótipo , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real , Programa de SEER , Superóxido Dismutase/metabolismo , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...