Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 80(2): 219-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21521769

RESUMO

Mutant cycle analysis has been used in previous studies to constrain possible docking orientations for various toxins. As an independent test of the bound orientation of µ-conotoxin PIIIA, a selectively targeted sodium channel pore blocker, we determined the contributions to binding voltage dependence of specific residues on the surface of the toxin. A change in the "apparent valence" (zδ) of the block, which is associated with a change of a specific toxin charge, reflects a change in the charge movement within the transmembrane electric field as the toxin binds. Toxin derivatives with charge-conserving mutations (R12K, R14K, and K17R) showed zδ values similar to those of wild type (0.61 ± 0.01, mean ± S.E.M.). Charge-changing mutations produced a range of responses. Neutralizing substitutions for Arg14 and Lys17 showed the largest reductions in zδ values, to 0.18 ± 0.06 and 0.20 ± 0.06, respectively, whereas unit charge-changing substitutions for Arg12, Ser13, and Arg20 gave intermediate values (0.24 ± 0.07, 0.33 ± 0.04, and 0.32 ± 0.05), which suggests that each of these residues contributes to the dependence of binding on the transmembrane voltage. Two mutations, R2A and G6K, yielded no significant change in zδ. These observations suggest that the toxin binds with Arg2 and Gly6 facing the extracellular solution, and Arg14 and Lys17 positioned most deeply in the pore. In this study, we used molecular dynamics to simulate toxin docking and performed Poisson-Boltzmann calculations to estimate the changes in local electrostatic potential when individual charges were substituted on the toxin's surface. Consideration of two limiting possibilities suggests that most of the charge movement associated with toxin binding reflects sodium redistribution within the narrow part of the pore.


Assuntos
Conotoxinas/química , Conotoxinas/metabolismo , Ativação do Canal Iônico/fisiologia , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ligação Proteica/fisiologia , Ratos , Sarcolema/química , Sarcolema/metabolismo , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/química
2.
Biochim Biophys Acta ; 1778(2): 376-91, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18035039

RESUMO

P-glycoprotein (P-gp) is the most intensively studied eukaryotic ATP binding cassette (ABC) transporter, due to its involvement in the multidrug resistance phenotype of a number of cancers. In common with most ABC transporters, P-gp is comprised of two transmembrane domains (TMDs) and two nucleotide binding domains (NBD), the latter coupling ATP hydrolysis with substrate transport (efflux in the case of P-gp). Biochemical investigations over the past twenty years have attempted to unlock mechanistic aspects of P-glycoprotein through scanning and site-directed mutagenesis of both the TMDs and the NBDs. Contemporaneously, crystallographers have elucidated the atomic structure of numerous ABC transporter NBDs, as well as the intact structure (i.e. NBDs and TMDs) of a distantly related ABC-exporter Sav1866. Significantly, the structure of P-gp remains unknown, and only low resolution electron microscopy data exists. Within the current manuscript we employ crystallographic data for homologous proteins, and a molecular model for P-gp, to perform a structural interpretation of the existing "mutagenesis database" for P-gp NBDs. Consequently, this will enable testable predictions to be made that will result in further in-roads into our understanding of this clinically important drug pump.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Bases de Dados Genéticas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...