Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 13(12): e081099, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056942

RESUMO

INTRODUCTION: Relative to outdoor air pollution, there is little evidence examining the composition and concentrations of indoor air pollution and its associated health impacts. The INGENIOUS project aims to provide the comprehensive understanding of indoor air pollution in UK homes. METHODS AND ANALYSIS: 'Real Home Assessment' is a cross-sectional, multimethod study within INGENIOUS. This study monitors indoor air pollutants over 2 weeks using low-cost sensors placed in three rooms in 300 Born in Bradford (BiB) households. Building audits are completed by researchers, and participants are asked to complete a home survey and a health and behaviour questionnaire, in addition to recording household activities and health symptoms on at least 1 weekday and 1 weekend day. A subsample of 150 households will receive more intensive measurements of volatile organic compound and particulate matter for 3 days. Qualitative interviews conducted with 30 participants will identify key barriers and enablers of effective ventilation practices. Outdoor air pollution is measured in 14 locations across Bradford to explore relationships between indoor and outdoor air quality. Data will be analysed to explore total concentrations of indoor air pollutants, how these vary with building characteristics, and whether they are related to health symptoms. Interviews will be analysed through content and thematic analysis. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the NHS Health Research Authority Yorkshire and the Humber (Bradford Leeds) Research Ethics Committee (22/YH/0288). We will disseminate findings using our websites, social media, publications and conferences. Data will be open access through the BiB, the Open Science Framework and the UK Data Service.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Estudos Transversais , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Reino Unido
2.
Phys Chem Chem Phys ; 19(47): 31634-31646, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29164191

RESUMO

The physicochemical changes experienced by organic aerosol particles undergoing dehydration into the surrounding gas phase can be drastic, forcing rapid vitrification of the particle and suppressing internal diffusion. Until recently, experimental studies have concentrated on quantifying diffusional mixing of either water or non-volatile components, while relatively little attention has been paid to the role of semivolatile organic component (SVOC) diffusion and volatilisation in maintaining the equilibrium between the gas and particle phases. Here we present methods to simultaneously investigate diffusivities and volatilities in studies of evolving single ternary aerosol particle size and composition. Analysing particles of ternary composition must account for the multiple chemical species that volatilise in response to a step change in gas phase water activity. In addition, treatments of diffusion in multicomponent mixtures are necessary to represent evolving heterogeneities in particle composition. We find that the contributions to observed size behaviour from volatilisation of water and a SVOC can be decoupled and treated separately. Employing Fickian diffusion modelling, we extract the compositional dependence of the diffusion constant of water and compare the results to recently published parametrisations in binary aerosol particles. The treatment of ideality and activity in each case is discussed, with reference to use in multicomponent core shell models. Meanwhile, the evaporation of an SVOC into an unsaturated gas flow may be treated by Maxwell's equation, with slow diffusional transport manifesting as a suppression in the extracted vapour pressure.

3.
Environ Sci Technol ; 51(7): 3922-3928, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28263597

RESUMO

Phenolic and nitro-aromatic compounds are extremely toxic components of atmospheric aerosol that are currently not well understood. In this Article, solid and subcooled-liquid-state saturation vapor pressures of phenolic and nitro-aromatic compounds are measured using Knudsen Effusion Mass Spectrometry (KEMS) over a range of temperatures (298-318 K). Vapor pressure estimation methods, assessed in this study, do not replicate the observed dependency on the relative positions of functional groups. With a few exceptions, the estimates are biased toward predicting saturation vapor pressures that are too high, by 5-6 orders of magnitude in some cases. Basic partitioning theory comparisons indicate that overestimation of vapor pressures in such cases would cause us to expect these compounds to be present in the gas state, whereas measurements in this study suggest these phenolic and nitro-aromatic will partition into the condensed state for a wide range of ambient conditions if absorptive partitioning plays a dominant role. While these techniques might have both structural and parametric uncertainties, the new data presented here should support studies trying to ascertain the role of nitrogen containing organics on aerosol growth and human health impacts.


Assuntos
Pressão de Vapor , Volatilização , Nitrocompostos , Hidrocarbonetos Policíclicos Aromáticos , Temperatura
4.
Phys Chem Chem Phys ; 16(36): 19453-69, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25105180

RESUMO

Laboratory measurements of vapour pressures for atmospherically relevant compounds were collated and used to assess the accuracy of vapour pressure estimates generated by seven estimation methods and impacts on predicted secondary organic aerosol. Of the vapour pressure estimation methods that were applicable to all the test set compounds, the Lee-Kesler [Reid et al., The Properties of Gases and Liquids, 1987] method showed the lowest mean absolute error and the Nannoolal et al. [Nannoonal et al., Fluid Phase Equilib., 2008, 269, 117-133] method showed the lowest mean bias error (when both used normal boiling points estimated using the Nannoolal et al. [Nannoolal et al., Fluid Phase Equilib., 2004, 226, 45-63] method). The effect of varying vapour pressure estimation methods on secondary organic aerosol (SOA) mass loading and composition was investigated using an absorptive partitioning equilibrium model. The Myrdal and Yalkowsky [Myrdal and Yalkowsky, Ind. Eng. Chem. Res., 1997, 36, 2494-2499] vapour pressure estimation method using the Nannoolal et al. [Nannoolal et al., Fluid Phase Equilib., 2004, 226, 45-63] normal boiling point gave the most accurate estimation of SOA loading despite not being the most accurate for vapour pressures alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...