Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 132: 102579, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38331544

RESUMO

A bloom of Karenia papilionacea that occurred along the Delaware coast in late summer of 2007 was the first Karenia bloom reported on the Delmarva Peninsula (Delaware, Maryland, and Virginia, USA). Limited spatial and temporal monitoring conducted by state agencies and citizen science groups since 2007 have documented that several Karenia species are an annual component of the coastal phytoplankton community along the Delmarva Peninsula, often present at background to low concentrations (100 to 10,000 cells L-1). Blooms of Karenia (> 105 cells L-1) occurred in 2010, 2016, 2018, and 2019 in different areas along the Delmarva Peninsula coast. In late summer and early autumn of 2017, the lower Chesapeake Bay experienced a K. papilionacea bloom, the first recorded in Bay waters. Blooms typically occurred summer into autumn but were not monospecific; rather, they were dominated by either K. mikimotoi or K. papilionacea, with K. selliformis, K. brevis-like cells, and an undescribed Karenia species also present. Cell concentrations during these mid-Atlantic Karenia spp. blooms equalled concentrations reported for other Karenia blooms. However, the negative impacts to environmental and human health often associated with Karenia red tides were not observed. The data compiled here report on the presence of multiple Karenia species in coastal waters of the Delmarva Peninsula detected through routine monitoring and opportunistic sampling conducted between 2007 and 2022, as well as findings from research cruises undertaken in 2018 and 2019. These data should be used as a baseline for future phytoplankton community analyses supporting coastal HAB monitoring programs.


Assuntos
Dinoflagellida , Humanos , Proliferação Nociva de Algas , Fitoplâncton , Virginia , Previsões
2.
J Chem Ecol ; 31(7): 1595-606, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16222795

RESUMO

Blooms of Lyngbya majuscula have been reported with increasing frequency and severity in the last decade in Moreton Bay, Australia. A number of grazers have been observed feeding upon this toxic cyanobacterium. Differences in sequestration of toxic compounds from L. majuscula were investigated in two anaspideans, Stylocheilus striatus, Bursatella leachii, and the cephalaspidean Diniatys dentifer. Species fed a monospecific diet of L. majuscula had different toxin distribution in their tissues and excretions. A high concentration of lyngbyatoxin-a was observed in the body of S. striatus (3.94 mg/kg(-1)) compared to bodily secretions (ink 0.12 mg/kg(-1); fecal matter 0.56 mg/kg(-1); eggs 0.05 mg/kg(-1)). In contrast, B. leachii secreted greater concentrations of lyngbyatoxin-a (ink 5.41 mg/kg(-1); fecal matter 6.71 mg/kg(-1)) than that stored in the body (2.24 mg/kg(-1)). The major internal repository of lyngbyatoxin-a and debromoaplysiatoxin was the digestive gland for both S. striatus (6.31 +/- 0.31 mg/kg(-1)) and B. leachii (156.39 +/- 46.92 mg/kg(-1)). D. dentifer showed high variability in the distribution of sequestered compounds. Lyngbyatoxin-a was detected in the digestive gland (3.56 +/- 3.56 mg/kg(-1)) but not in the head and foot, while debromoaplysiatoxin was detected in the head and foot (133.73 +/- 129.82 mg/kg(-1)) but not in the digestive gland. The concentrations of sequestered secondary metabolites in these animals did not correspond to the concentrations found in L. majuscula used as food for these experiments, suggesting it may have been from previous dietary exposure. Trophic transfer of debromoaplysiatoxin from L. majuscula into S. striatus is well established; however, a lack of knowledge exists for other grazers. The high levels of secondary metabolites observed in both the anaspidean and the cephalapsidean species suggest that these toxins may bioaccumulate through marine food chains.


Assuntos
Cianobactérias , Toxinas de Lyngbya/farmacocinética , Moluscos/metabolismo , Animais , Dieta , Fezes/química , Comportamento Alimentar , Moluscos/química
3.
Mar Pollut Bull ; 51(1-4): 428-37, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15757741

RESUMO

During the last decade there has been a significant rise in observations of blooms of the toxic cyanobacterium Lyngbya majuscula along the east coast of Queensland, Australia. Whether the increase in cyanobacterial abundance is a biological indicator of widespread water quality degradation or also a function of other environmental change is unknown. A bioassay approach was used to assesses the potential for runoff from various land uses to stimulate productivity of L. majuscula. In Moreton Bay, L. majuscula productivity was significantly (p<0.05) stimulated by soil extracts, which were high in phosphorus, iron and organic carbon. Productivity of L. majuscula from the Great Barrier Reef was also significantly (p<0.05) elevated by iron and phosphorus rich extracts, in this case seabird guano adjacent to the bloom site. Hence, it is possible that other L. majuscula blooms are a result of similar stimulating factors (iron, phosphorus and organic carbon), delivered through different mechanisms.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eutrofização , Poluentes da Água/intoxicação , Animais , Bioensaio , Aves , Carbono , Monitoramento Ambiental , Ferro , Esterco , Fósforo , Queensland , Fatores de Risco , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...